Közérthetően az atomenergiáról

Az atommagban tárolt energia hasznosításának lehetősége a XX. század legjelentősebb tudományos felfedezései közé tartozik.  

A maghasadást 1939-ben figyelte meg Hahn, Strassman és Meitner. Azt találták, hogy neutronnal való ütközés hatására az uránatom magja két közepes méretű magra esik szét. Később azt gyanították, hogy elméletileg minden atommag elhasadhat, de a gyakorlatban csak néhány urán- és plutóniumizotóp esetében jön létre könnyen a hasadás (neutronok segítségével). Ezek az izotópok ráadásul energetikailag kedvezőbb állapotba jutnak a hasadás során, tehát több energia szabadul fel, mint amennyi a hasításhoz szükséges.

Ezt az energiát hasznosítják az atomerőművek.

 

A 235-ös uránizotóp hasadásakor átlagosan 2,47 neutron keletkezik. Ha ezek közül átlagosan egynél több neutront lassítanának le, akkor a hasadást előidéző neutronok száma folyamatosan növekedne. Ez azt eredményezné, hogy egyre több hasadás következne be azonos idő alatt. A hasadások számának növekedését folyamatosan egyensúlyban kell tartani a neutronok számának szabályozásával.

Az atomreaktorokban szabályozott láncreakció történik.


A neutronok számát kétféle módon szabályozzák. Egyrészt a reaktorban keringő hűtővízben bórt oldanak fel, mert a bór erősen neutronelnyelő anyag. Mennyiségét úgy állítják be, hogy a hasadásonként átlagosan megmaradó neutronok száma csak kevéssel legyen több mint egy. Másrészt a finomszabályozást az aktív zónába benyúló szabályozó rudakkal végzik. Lehet változtatni azt, hogy a szabályozó rudak mennyire nyúljanak be az aktív zónába. Ha növelni akarják a neutronok számát, azaz a teljesítményt, akkor kifelé húzzák a rudakat, és ezáltal a reaktor egy új egyensúlyi állapotba kerül az új megnövelt teljesítményen.  

Az atomerőmű a hőerőművek közé tartozik. A hőerőművekben hőt termelnek, amelyet mozgási energiává alakítanak, ebből pedig villamos energiát állítanak elő. Az atomerőművekben a hőtermelés a szabályozott láncreakció révén a reaktorban történik.

A világban jelenleg üzemelő atomerőművi blokkok döntő többsége könnyűvíz hűtésű, könnyűvíz moderátoros reaktorral szerelt, ezen belül is legnépszerűbbek (több mint 60% részesedéssel) a nyomottvizes (PWR) típusok. Ilyen a jelenlegi négy paksi blokk és ilyenek lesznek az új egységek is. A második legelterjedtebb a forralóvizes reaktor (BWR) technológiájú atomerőmű.

Forralóvizes reaktor
A BWR reaktorokban a reaktor aktív zónájában a hűtőközegként használt víz elforr, majd az így keletkezett gőz hajtja meg a gőzturbinát. A turbina által előállított mechanikai energiát a generátor alakítja át villamos energiává. A turbinából távozó fáradt gőzt kondenzálják, majd visszavezetik a reaktorba. A BWR erőművekben emiatt nincs szükség gőzfejlesztőre, egykörös zárt és egykörös nyitott hűtőrendszert alkalmaznak. A zárt hűtőrendszer mindegyik eleme radioaktív közegben dolgozik.

Nyomottvizes reaktor
A PWR reaktorokban a fent leírtakkal szemben a reaktor aktív zónájában nagy nyomású víz hűti a fűtőelemeket, a turbinát meghajtó gőz egy speciális hőcserélőben, a gőzfejlesztőben keletkezik. A gőzfejlesztő közbeiktatásával elérhető, hogy a zónát hűtő radioaktív közeg ne érintkezzen a turbinával. A PWR erőművekben ezért kétkörös zárt és egykörös nyitott hűtőrendszert alkalmaznak. A két zárt hűtőrendszer közül csak az ún. primer kör berendezései dolgoznak radioaktív közeggel.

További reaktortípusok: 

Nehézvizes reaktor
A nyomottvizes típushoz hasonlóan két zárt hűtőkörös, a primer köri nehézvíz azonban csak a hőszállítást végzi. A moderáláshoz szintén nehézvizet (a nehézvízben található hidrogén atommagok egy neutronnal is rendelkeznek a proton mellett, ezt a hidrogén izotópot deutériumnak nevezik) használnak, ami lehetővé teszi, hogy dúsítás nélküli, természetes uránt is lehessen használni üzemanyagnak.

Gázhűtésű reaktor
Az ugyancsak két zárt hűtőkört magában foglaló reaktortípus moderátorként grafitot, hűtőközegnek szén-dioxidot használ, így jóval magasabb primer köri hőmérsékletet lehet elérni, mint víz hűtőközeggel. A nagy hőmérsékletű szén-dioxid a szekunder kör vizét egy hőcserélőn keresztül gőzölögteti el.

RBMK reaktor
Szovjet fejlesztésű reaktor, az energiatermelés mellett plutónium előállításra is alkalmas. Üzemanyagként enyhén dúsított vagy természetes uránt használnak. A neutron lassítását a grafit végzi, a forralóvizes reaktorhoz hasonlóan a víz a reaktorban felforr, és a turbinába jut. Ennek a típusnak nagy hátránya, hogy a hűtőközeg elvesztése esetén sem szűnik meg a maghasadás, így a láncreakció sem áll le, ellentétben a víz moderálású megoldásoknál. Ilyen típusú volt a csernobili tragikus sorsú atomerőmű is. Ma már nem építenek ilyen típusú reaktorokat, éppen a biztonsági hiányosságai miatt.

A nyomottvizes atomerőmű hőtermelő egysége tehát az atomreaktor.


A reaktor belsejében lévő urán-dioxid fűtőanyagban folyik a nukleáris láncreakció. A keletkező hőmennyiséget zárt rendszerben keringő nagynyomású, magas hőmérsékletű víz szállítja el a gőzfejlesztőkbe. Ez a primer kör.

A térfogat-kompenzátor feladata a primer köri nyomás fenntartása és szabályozása. A primer köri magas nyomás biztosítja, hogy a hűtővíz víz halmazállapotú maradjon. 

A gőzfejlesztők mindegyike nagynyomású gőzt állít elő, amely a turbinák tengelyét forgatja, ezáltal a reaktorban termelt hőenergia mozgási energiává alakul át.  Ez a forgómozgás a generátorokban villamos áramot termel, amely transzformátorokon és kapcsolóberendezéseken keresztül kerül az országos villamosenergia-rendszerbe. Eközben a turbinákban munkát végzett gőz a kondenzátorban lecsapódik, a víz visszavezetésre kerül a gőzfejlesztőbe. Ez a szekunder kör.

A blokk nyitott körű hűtőrendszere a kondenzátort hűti, biztosítva a munkát végzett gőz lecsapódását. Ez a hűtőrendszer hűtőtoronyhoz vagy megfelelő víz mennyiséggel rendelkező folyóhoz kapcsolódik.

 

Az új blokkokról

A VVER-1200, 3+ generációs, nyomottvizes reaktortípus. A tervezett bruttó villamos teljesítmény blokkonként 1200 MW. A blokkok elvárt üzemideje minimum 60 év. 
 

Az új blokkok látványterve

Az új blokkokban a reaktor és a primer kör egy kettősfalú védőépületen (konténmenten) belül helyezkedik el. A külső épület védi a berendezéseket a külső veszélyekkel szemben (akár egy repülőgép rázuhanása esetén is lehetővé teszi a blokkok biztonságos leállítását).

 

Külső veszélyek elleni védelem

A belső konténment egy felül félgömbbel lezárt hengeres, szintén hermetikus épület, amely elzárja a környezettől a radioaktív anyagokat tartalmazó primer kört és pihentetőmedencét. A biztonságot garantálják továbbá az automatikus biztonsági rendszerek, amelyek szükség esetén a személyzet beavatkozása nélkül is működésbe lépnek. Emellett a magas biztonsági színvonalhoz hozzájárulnak többek között a passzív biztonsági rendszerek is, amelyek működését természeti törvények (pl. gravitáció) garantálják, így nincs szükség külső energiaforrásra.

A 330 tonnás reaktortartály belső átmérője 4,25 méter, magassága több mint 11 méter, jellemző falvastagsága 20 cm. Az aktív zónában 163 üzemanyag-kazetta található, egy kazetta 533 kg UO2 (urán-dioxid) üzemanyagot tartalmaz.

A blokkok kondenzátorainak hűtése frissvízzel történik, másodpercenként összesen 132 m3 Duna-víz felhasználásával. Természetesen maga a Duna vize, a szekunder kör révén, hermetikusan el van zárva a sugárzást kibocsátó primer köri egységektől, így a hűtési feladata ellátása után biztonsággal visszaengedhető a folyómederbe.