# **AMBIENT AIR**

# TABLE OF CONTENTS

| 16 AMBIENT AIR                                                                                              | . 10 |
|-------------------------------------------------------------------------------------------------------------|------|
| 16.1 Legal background – Area category, limits                                                               | 10   |
| 16.1.1 Laws                                                                                                 | 10   |
| 16.1.2 Air pollution zones                                                                                  | 11   |
| 16.1.2 Air pollution limits targets guidance values                                                         | 12   |
| 10.1.5 All politicit limits, targets, guidance values                                                       |      |
| 16.2 Air quality in the studied area                                                                        | 13   |
| 16.2.1 Procession and assessment of available data and information -1987-2011                               | 13   |
| 16.2.1.1 Environmental Impact Study for operation time extension of Paks Nuclear Plant - 2006               | 13   |
| 16.2.1.2 National Air Pollution Measuring Network                                                           | 20   |
| 16.2.1.2.1 2007 recapitulative assessment of Hungary's air quality based on manual measuring network [16-2] | Z1   |
| 16.2.1.2.2 2000 recapitulative assessment fungary's air quality based on manual measuring network [16-4]    | 23   |
| 16.2.1.2.5 2000 recapitulative assessment Hungary's air quality based on manual measuring network [16-5]    | 24   |
| 16.2.1.2.5 2011, recapitulative assessment Hungary's air quality based on manual measuring network [16-6]   | 20   |
| 16.2.1.2.6 Assessments based on annual average values between 2003-2011                                     | 27   |
| 16.2.1.3 Studies prepared within the NAÜ program in 2010-2011 - AEKI [16-7]                                 | 28   |
| 16.2.1.1 Preliminary consultation documentation (PCD) – 2011 [16-8]                                         | 32   |
| 16.2.2 Air pollution baseline survey – 2012-2013                                                            | 32   |
| 16.2.2.1 Scope of the survey                                                                                | 33   |
| 16.2.2.2 Review of requirements for methodology                                                             | 33   |
| 16.2.2.3 Methodology applied for the measurements/tests                                                     | 33   |
| 16.2.2.3.1 Continuous measurements/tests                                                                    | 33   |
| 16.2.2.3.2 Phased, active surveys                                                                           | 34   |
| 16.2.2.3.3 Phased, passive survey                                                                           | 34   |
| 16.2.2.3.4 Measurement of meteorological parameters                                                         | 35   |
| 16.2.2.4 Methodology applied for the assessment                                                             | 35   |
| 16.2.2.5 OII-the-spot all pollution measurements                                                            | 30   |
| 16.2.2.5.7 Paks, Nuclear plant, Mobilisation Area - 1. Emp.                                                 |      |
| 16.2.2.5.3 Paks, Southern access road, Meteorological Station - 3.1 Mp                                      | 69   |
| 16.2.2.5.4 Csámpa, Kis street - 4. LMp                                                                      | 85   |
| 16.2.2.5.5 Dunaszentbenedek - 5. LMp                                                                        | .101 |
| 16.2.2.5.6 Paks, Dankó Pista street 1. OVIT site - 6. LMp                                                   | .118 |
| 16.2.2.6 Aggregated assessment of on-the-spot measurement results in 2012/2013                              | .135 |
| 16.2.2.6.1 NO <sub>2</sub> summary of measurement results                                                   | .138 |
| 16.2.2.6.2 NO <sub>x</sub> summary of measurement results                                                   | .138 |
| 16.2.2.6.3 SO <sub>2</sub> summary of measurement results                                                   | .139 |
| 16.2.2.6.4 CO summary of measurement results.                                                               | .139 |
| 16.2.2.0.0 PM10 SUMMARY OF MEASUREMENT RESULTS                                                              | .140 |
| 16.2.2.0.0 TSFM Summary of measurement results                                                              | .140 |
| 16.2.2.0.7 Setting dust summary of measurement results                                                      | 141  |
| 16.2.3 Air loadability                                                                                      | 1/2  |
| 10.2.0 All load ability                                                                                     | 440  |
| 16.3 Modelling of propagation of non-radioactive air pollutants                                             | 14Z  |
| 16.3.1 The applied model                                                                                    | 142  |
| 16.3.2 Data characteristic for source environment                                                           | .144 |
| 16.3.2.2 "Most frequent meteorological condition"                                                           | .147 |
| 16.3.2.2.1 Wind direction, average wind speed                                                               | .147 |
| 16.3.2.2.2 Atmospheric stability conditions                                                                 | .149 |
| 16.3.3 Meteorological databases applied for propagation simulations                                         | 152  |
| 16.3.3.1 Average meteorological data for conservative estimate                                              | .152 |
| 16.3.3.2 Simulations using real meteorological database                                                     | .153 |
| 16.4 Impacts of emitted non-radioactive air pollutants onto ambient air quality during Paks II construction | .154 |

| 16.4.1 Legal basis for the impact zone determination                                                       | 154 |
|------------------------------------------------------------------------------------------------------------|-----|
| 16.4.2 Impact factors of Pake II implementation                                                            | 156 |
| 16.4.2.1 Air polluting sources and characteristics of Pake II implementation                               | 156 |
| 16.4.2.1.1 Air polluting sources and characteristics of Paks II implementation                             | 156 |
| 16.4.2.1.2 Air polluting sources and their characteristics along 400 kV block transmission line and 120 kV |     |
| transmission line up to the new sub-station                                                                | 159 |
| 16.4.2.1.3 Transportation                                                                                  | 160 |
| 16.4.3 Impacts and impact zones of construction                                                            | 161 |
| 16.4.3.1 Construction works impacts                                                                        | 161 |
| 16.4.3.1.1 Demolishing period                                                                              | 161 |
| 16.4.3.1.2 Landscaping period                                                                              | 164 |
| 16.4.3.1.3 Foundation period                                                                               | 167 |
| 16.4.3.1.1 Structure construction period                                                                   | 170 |
| 16.4.3.1.2 Summary: impacts during the implementation phase                                                | 1/2 |
| 16.4.3.2 Transportation impacts                                                                            | 1/3 |
| 16.4.4 I echnical actions aiming at emission mitigation                                                    | 1/5 |
| 16.4.5 Monitoring system                                                                                   | 175 |
| 16.5 Impacts of non- radioactive air pollutants emitted during Paks II. operation                          | 176 |
| 16.5.1 Impacts of Paks II ordinary operation                                                               | 176 |
| 16.5.1.1 Air polluting sources and characteristics of Paks II. ordinary operation                          | 176 |
| 16.5.1.2 Impacts and impact zone of Paks II. operation                                                     | 180 |
| 16.5.1.3 Impacts and impact zone of transportation                                                         | 181 |
| 16.5.1 Operational disturbances, emergences                                                                | 182 |
| 16.6 Impacts of Paks II. abandonment onto the air quality                                                  | 182 |
| 16.7 Impacts and impact zones of simultaneous operations in Paks II. and Paks Nuclear plant                | 182 |
| 16.8 Cross-border environmental impacts                                                                    | 183 |
| 160 reference                                                                                              | 102 |
|                                                                                                            | 103 |

# **LIST OF FIGURES**

| Figure 16.2.1-1: Colour codes applied for air pollution index                                                   | 20 |
|-----------------------------------------------------------------------------------------------------------------|----|
| Figure 16.2.1-2: Location of manual measuring stations                                                          | 21 |
| Figure 16.2.1-3: Air pollution map – 2007                                                                       | 23 |
| Figure 16.2.1-4: Summarised air pollution map – 2008                                                            | 24 |
| Figure 16.2.1-5: Summarised air pollution map – 2009                                                            | 25 |
| Figure 16.2.1-6: Summarised air pollution map – 2010                                                            | 26 |
| Figure 16.2.1-7: Summarised air pollution map – 2011                                                            | 27 |
| Figure 16.2.1-8: Changes in settling dust data in the region between 2003-2011                                  | 28 |
| Figure 16.2.1-9: NO <sub>2</sub> in the region between 2003-2011                                                | 28 |
| Figure 16.2.1-10: Measuring points under the NAÜ program in 2010-2011                                           | 29 |
| Figure 16.2.1-11: Run-off curves of values measured under the NAÜ program in 2010-2011 at Paks                  | 30 |
| Figure 16.2.1-12: Run-off curves of PM <sub>10</sub> values measured under the NAÜ program in 2010-2011 at Fadd | 31 |
| Figure 16.2.2-1: Location of air pollution measuring points                                                     | 36 |
| Figure 16.2.2-2: 1. LMp location                                                                                | 37 |
| Figure 16.2.2-3: Location of testing truck and settling dust sampling unit location at 1. LMp point             | 37 |
| Figure 16.2.2-4: 1. LMp - NO <sub>2</sub> hourly run-off curves                                                 | 39 |
| Figure 16.2.2-5: 1. LMp - NO2 daily average concentration values                                                | 40 |
| Figure 16.2.2-6: 1. LMp - NO <sub>x</sub> hourly run-off curves                                                 | 42 |
| Figure 16.2.2-7: 1. LMp - NO <sub>x</sub> daily average concentration values                                    | 43 |
| Figure 16.2.2-8: 1. LMp - SO <sub>2</sub> hourly run-off curves                                                 | 45 |
| Figure 16.2.2-9: 1. LMp – SO <sub>2</sub> daily average concentration values                                    | 46 |
| Figure 16.2.2-10: 1. LMp - CO hourly run-off curves                                                             | 48 |
| Figure 16.2.2-11: 1. LMp – CO daily average concentration                                                       | 49 |
| Figure 16.2.2-12: 1. LMp - PM10 and a TSPM daily run-off curves                                                 | 51 |

| Figure 16.2.2-13: 2. LMp location                                                                           | 53         |
|-------------------------------------------------------------------------------------------------------------|------------|
| Figure 16.2.2-14: Location of testing truck and settling dust sampling units at 2 LMp points                | 53         |
| Figure 16.2.2-15: 2. LMp - NO <sub>2</sub> hourly run-off curves along the north access road                | 55         |
| Figure 16.2.2-16: 2. LMp - NO <sub>2</sub> daily average concentration at the north access road             | 56         |
| Figure 16.2.2-17: 2. LMp - NOx hourly run-off curves along the north access road                            |            |
| Figure 16.2.2-18: 2. LMp - NO <sub>x</sub> daily average concentration along the north access road          |            |
| Figure 16.2.2-19: 2. I Mp - SO <sub>2</sub> hourly run-off curves along the north access road               | 61         |
| Figure 16.2.2.2.1 $M_{\rm D} = SO_2$ daily average concentration along the north access road                | 62         |
| Figure 16.2.2.2.2.1.2.1 Mp - CO bourly run-off curves along the north access road                           |            |
| Figure 16.2.2-21. 2. LMp – CO daily average concentration along the north access road                       | 04<br>65   |
| Figure 16.2.2.22. 2. Livip – CO daily average concentration along the north access road                     | 03<br>67   |
| Figure 16.2.2-25. 2. Livip - 1 Mit and a 151 M daily full-on curves along the north access road             |            |
| Figure 16.2.2-24. 5. Livip location of testing truck and settling dust sempling units at 2 LMp site         |            |
| Figure 16.2.2-25. Location of testing truck and setting dust sampling units at 5 LMp site                   |            |
| Figure 16.2.2-26: 3. Limp - NO <sub>2</sub> houring run-off curves at 3 Limp meterorogical station          |            |
| Figure 16.2.2-27: 3. LMp - NO <sub>2</sub> daily average concentration at 3 LMp meteorological station      |            |
| Figure 16.2.2-28: 3. LMp - NO <sub>x</sub> hourly run-off curves at 3 LMp meteorological station            |            |
| Figure 16.2.2-29: 3. LMp - NO <sub>x</sub> daily average concentration at 3 LMp meteorological station      |            |
| Figure 16.2.2-30: 3. LMp - SO <sub>2</sub> hourly run-off curves at 3 LMp meteorological station            | 77         |
| Figure 16.2.2-31: 3. LMp – SO <sub>2</sub> daily average concentration at 3 LMp meteorological station      | 78         |
| Figure 16.2.2-32: 3. LMp - CO hourly run-off curves at 3 LMp meteorological station                         | 80         |
| Figure 16.2.2-33: 3. LMp – CO daily average concentration at 3 LMp meteorological station                   | 81         |
| Figure 16.2.2-34: 3. LMp - PM <sub>10</sub> and a TSPM daily run-off curves at 3 LMp meteorological station | 83         |
| Figure 16.2.2-35: 4. LMp location                                                                           | 85         |
| Figure 16.2.2-36: Location of testing truck and settling dust sampling units at 4 LMp site                  | 85         |
| Figure 16.2.2-37: 4. LMp - NO <sub>2</sub> hourly run-off curves                                            | 87         |
| Figure 16.2.2-38: 4. LMp - NO <sub>2</sub> daily average concentration                                      |            |
| Figure 16.2.2-39: 4. LMp - NOxhourly run-off curves                                                         |            |
| Figure 16.2.2-40: 4. LMp - NO <sub>x</sub> daily average concentration                                      |            |
| Figure 16.2.2-41: 4. I Mp - SQ <sup>2</sup> hourly run-off curves                                           | 93         |
| Figure 16.2.2-42 $\cdot$ 4 $\mid$ Mp – SO <sub>2</sub> daily average concentration                          | 94         |
| Figure 16.2.2-43: 4 J Mp - CO bourly run-off curves                                                         | 96         |
| Figure 16.2.2.4.4. I Mp - CO daily average concentration                                                    |            |
| Figure 16.2.2.44. 4. LMp - 00 daily average concentration                                                   | 00         |
| Figure 16.2.2.45. 4. Livip - FM10 and a TSFM daily full-on curves                                           |            |
| Figure 16.2.2-40. 5. Livip location of testing truck and settling dust sempling units at 5.1 Mp sites       | 101        |
| Figure 16.2.2-47. Location of testing truck and setting dust sampling units at 5 Livip sites                | 102        |
| Figure 16.2.2-48. 5. Limp - $NO_2$ nourly run-off curves                                                    |            |
| Figure 16.2.2-49: 5. LMp - NO <sub>2</sub> daily average concentration                                      |            |
| Figure 16.2.2-50: 5. LMp - NO <sub>x</sub> hourly run-off curves                                            |            |
| Figure 16.2.2-51: 5. LMp - NO <sub>x</sub> daily average concentration                                      |            |
| Figure 16.2.2-52: 5. LMp - SO <sub>2</sub> hourly run-off curves                                            | 110        |
| Figure 16.2.2-53: 5. LMp – SO <sub>2</sub> daily average concentration                                      | 111        |
| Figure 16.2.2-54: 5. LMp - CO hourly run-off curves                                                         | 113        |
| Figure 16.2.2-55: 5. LMp – CO daily average concentration                                                   | 114        |
| Figure 16.2.2-56: 5. LMp - PM <sub>10</sub> and a TSPM daily run-off curves                                 | 116        |
| Figure 16.2.2-57: 6. LMp locatione                                                                          | 118        |
| Figure 16.2.2-58: Location of testing truck and settling dust sampling units at 6 LMp site                  | 118        |
| Figure 16.2.2-59: 6. LMp - NO <sub>2</sub> hourly run-off curves                                            | 120        |
| Figure 16.2.2-60: 6. LMp - NO <sub>2</sub> daily average concentration                                      | 121        |
| Figure 16.2.2-61: 6. LMp - NO <sub>x</sub> hourly run-off curves                                            |            |
| Figure 16.2.2-62: 6. LMp - NO <sub>x</sub> daily average concentration                                      |            |
| Figure 16.2.2-63: 6. LMp - SO <sub>2</sub> hourly run-off curves                                            |            |
| Figure 16.2.2-64: 6. I Mp – SO <sub>2</sub> daily average concentration                                     | 127        |
| Figure 16.2.2-65: 6 J Mp - CO hourly run-off curves                                                         | 129        |
| Figure 16.2.2-66: 6 J Mp - CO daily average concentration                                                   | 120        |
| Figure 16.2.2.60. 0. Livip – 0.0 daily average concentration and $r_{\rm max}$                              | 120        |
| Figure 16.2.2-07. O. Livip - Fiving and a Forrivi daily full-off Guives                                     | ۲۵۷<br>۱۵۸ |
| 1 yui 6 10.2.2-00. Usualiy tuli-01 bulves                                                                   | 134        |

| Figure 16.2.2-69: location of air pollution measuring points during various measuring periods                             | 135 |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 16.3.2-1: Map of surface cover and land use in 30 km radius area in 2013 – with colour codes                       |     |
| Figure 16.3.2-2: Wind directions relative frequency on annual level [%], and during the summer-winter season [%] based on |     |
| tests held in Paks station between 1997-2010                                                                              | 147 |
| Figure 16.3.2-3: Annual average wind speed [m/s] between 1997-2010, and multi-vear average (1997-2010) at Paks station    | 148 |
| Figure 16.3.2-4: Wind direction relative frequency [%] at Paks measuring tower at 20 m height                             | 149 |
| Figure 16.3.2-5: Average wind speed relative frequency [%] at Paks measuring tower at 20 m height                         | 149 |
| Figure 16.3.3-1: Wind direction frequency measured at Paks measuring tower and its deviation in 10 degree resolution      | 152 |
| Figure 16.4.1-1: Definition of value higher than the limit and the impact zone                                            |     |
| Figure 16.4.2-1: Air polluting sources during implementation phase – overview site plan                                   |     |
| Figure 16.4.2-2: Air polluting sources during implementation phase on the plant area                                      | 157 |
| Figure 16.4.3-1: CO impact zone during the demolishing period                                                             |     |
| Figure 16.4.3-2: NO <sub>x</sub> impact zone during the demolishing period                                                | 162 |
| Figure 16.4.3-3: C <sub>x</sub> H <sub>v</sub> impact zone during the demolishing period                                  | 163 |
| Figure 16.4.3-4: CO impact zone during the landscaping period                                                             | 164 |
| Figure 16.4.3-5: NO <sub>x</sub> impact zone during the landscaping period                                                | 165 |
| Figure 16.4.3-6: C <sub>x</sub> H <sub>v</sub> impact zone during the landscaping period                                  | 165 |
| Figure 16.4.3-7: PM <sub>10</sub> impact zone during the soil removal                                                     | 166 |
| Figure 16.4.3-8: CO impact zone during the foundation period                                                              | 167 |
| Figure 16.4.3-9: NO <sub>x</sub> impact zone during the foundation period                                                 | 168 |
| Figure 16.4.3-10: CxH <sub>v</sub> impact zone during the foundation period                                               | 168 |
| Figure 16.4.3-11: PM <sub>10</sub> impact zone during the foundation period                                               | 169 |
| Figure 16.4.3-12: CO impact zone during the structure construction period                                                 | 170 |
| Figure 16.4.3-13: NO <sub>x</sub> impact zone during the structure construction period                                    | 171 |
| Figure 16.4.3-14: CxHy impact zone during the structure construction period                                               | 171 |
| Figure 16.4.3-15: Average NOx impact zone emerging due to impacts of transportation during the implementation             | 174 |
| Figure 16.5.1-1: Location of point sources for the safety (stand-by) diesel generators                                    | 177 |
| Figure 16.5.1-2: NO <sub>x</sub> impact zone of diesel generators during pilot/test operation                             | 180 |
| Figure 16.5.1-3: C <sub>x</sub> H <sub>y</sub> impact zone of diesel generators during pilot/test operation               | 181 |
|                                                                                                                           |     |

# LIST OF TABLES

| Table 16.1.2-1: Paks air pollution category                                          | 11 |
|--------------------------------------------------------------------------------------|----|
| Table 16.1.2-2: Sulphur-dioxide maximum and minimum test limits                      | 11 |
| Table 16.1.2-3: Nitrogen dioxide and nitrogen oxides maximum and minimum test limits | 11 |
| Table 16.1.2-4: Carbon-monoxide maximum and minimum test limits                      | 11 |
| Table 16.1.2-5: PM <sub>10</sub> maximum and minimum test limits                     | 12 |
| Table 16.1.3-1: Air pollution health limits                                          | 12 |
| Table 16.1.3-2: Planned targets for air polluting materials                          | 12 |
| Table 16.1.3-3: Settling dust tervezési guidance valuee                              | 12 |
| Table 16.2.1-1: Manual measuring stations characteristics - 2007                     | 22 |
| Table 16.2.1-2: Air pollution Index - 2007                                           | 22 |
| Table 16.2.1-3: Air pollution determined by statistical indicators - 2007            | 22 |
| Table 16.2.1-4: A manual measuring stations characteristics i - 2008                 | 23 |
| Table 16.2.1-5: Air pollution Index - 2008                                           | 23 |
| Table 16.2.1-6: Air pollution determined by statistical indicators - 2008            | 24 |
| Table 16.2.1-7: Characteristics of manual measuring stations - 2009                  | 24 |
| Table 16.2.1-8: Air pollution Index - 2009                                           | 24 |
| Table 16.2.1-9: Air pollution determined by statistical indicators - 2009            | 25 |
| Table 16.2.1-10: Characteristics of manual measuring stations - 2010                 | 25 |
| Table 16.2.1-11: Air pollution Index - 2010                                          | 25 |
| Table 16.2.1-12: Air pollution determined by statistical indicators - 2010           | 26 |
| Table 16.2.1-13: Characteristics of manual measuring stations - 2011                 | 26 |
| Table 16.2.1-14: Air pollution Index - 2011                                          | 27 |

| Table 16.2.1-15: Air pollution determined by statistical indicators - 2011                          | 27  |
|-----------------------------------------------------------------------------------------------------|-----|
| Table 16.2.1-16: Settling dust annual average concentration - 2003 - 2011                           | 27  |
| Table 16.2.1-17: Nitrogen dioxide annual average concentration – 2003 - 2011                        | 28  |
| Table 16.2.1-18: Measurement characteristics of study prepared under the NAÜ program in 2010-2011   | 29  |
| Table 16.2.1-19: Measurement results of study prepared under the NAÜ program in 2010-2011 at Paks   | 30  |
| Table 16.2.1-20: Measurement results of study ppprepared under the NAÜ program in 2010-2011 at Fadd | 31  |
| Table 16.2.2-1: Measurement points coordinates                                                      | 36  |
| Table 16.2.2-2: Schedule of the planned on-the-spot measurements                                    | 36  |
| Table 16.2.2-3: 1. LMp on-the-spot measurements/tests – NO2                                         | 38  |
| Table 16.2.2-4: 1. LMp NO <sub>2</sub> measurements/tests results – measurement by periods          | 40  |
| Table 16.2.2-5: 1. LMp on-the-spot measurements/tests – NOx.                                        | 41  |
| Table 16.2.2-6: 1. LMp NO <sub>x</sub> measurements/tests results – measurement by periods          | 43  |
| Table 16.2.2-7: 1. LMp on-the-spot measurements/tests – SO2.                                        | 44  |
| Table 16.2.2-8: 1. LMp SO <sub>2</sub> measurements/tests results measurement by periods            | 46  |
| Table 16.2.2-9: 1. LMp on-the-spot measurements/tests – CO                                          | 47  |
| Table 16.2.2-10: 1. LMp CO measurements/tests results - measurement by periods                      | 49  |
| Table 16.2.2-11: 1. LMp on-the-spot measurements/tests – PM <sub>10</sub> , TSPM                    | 50  |
| Table 16.2.2-12: 1. LMp on-the-spot measurements/tests – Settling dust                              | 52  |
| Table 16.2.2-13: 2. LMp on-the-spot measurements/tests – NO2.                                       | 54  |
| Table 16.2.2-14: 2. LMp NO <sub>2</sub> measurements/tests results – measurement by periods         | 56  |
| Table 16.2.2-15: 2. LMp on-the-spot measurements/tests – NO <sub>x</sub>                            | 57  |
| Table 16.2.2-16: 2. LMp NO <sub>x</sub> measurements/tests results                                  | 59  |
| Table 16.2.2-17: 2. LMp on-the-spot measurements/tests – SO <sub>2</sub>                            | 60  |
| Table 16.2.2-18: 2. LMp SO <sub>2</sub> measurements/tests results                                  | 62  |
| Table 16.2.2-19: 2. LMp on-the-spot measurements/tests – CO                                         | 63  |
| Table 16.2.2-20: 2. LMp CO measurements/tests results                                               | 65  |
| Table 16.2.2-21: 2. LMp on-the-spot measurements/tests – PM <sub>10</sub> , TSPM                    | 66  |
| Table 16.2.2-22: 2. LMp on-the-spot measurements/tests – settling dust                              | 68  |
| Table 16.2.2-23: 3. LMp on-the-spot measurements/tests – NO <sub>2</sub>                            | 70  |
| Table 16.2.2-24: 3. LMp NO <sub>2</sub> measurements/tests results                                  |     |
| Table 16.2.2-25: 3. LMp on-the-spot measurements/tests – NO <sub>x</sub>                            |     |
| Table 16.2.2-26: 3. LMp NO <sub>x</sub> measurements/tests results                                  | 75  |
| Table 16.2.2-27: 3. LMp on-the-spot measurements/tests – SO <sub>2</sub>                            |     |
| Table 16.2.2-28: 3. LMp SO <sub>2</sub> measurements/tests results                                  |     |
| Table 16.2.2-29: 3. LMp on-the-spot measurements/tests – CO.                                        | 79  |
| Table 16.2.2-30: 3. LMp CO measurements/tests results                                               | 81  |
| Table 16.2.2-31: 3. LMp on-the-spot measurements/tests – PM <sub>10</sub> , TSPM                    |     |
| Table 16.2.2-32: 3. LMp on-the-spot measurements/tests – settling dust.                             |     |
| Table 16.2.2-33: 4. LMp on-the-spot measurements/tests – NO <sub>2</sub>                            |     |
| Table 16.2.2-34: 4. LMp NO <sub>2</sub> measurements/tests results                                  |     |
| Table 16.2.2-35: 4. LMp on-the-spot measurements/tests – NO <sub>x</sub>                            |     |
| Table 16.2.2-36: 4. LMp NO <sub>2</sub> measurements/tests results                                  |     |
| Table 16.2.2.37 4 LMp on-the-spot measurements/tests $-SO_2$                                        | 92  |
| Table 16.2.2.38: 4 LMp SO <sub>2</sub> measurements/tests results                                   |     |
| Table 16.2.2.39: 4 LMp on-the-spot measurements/tests – CO                                          |     |
| Table 16.2.2.40: 4 LMp CO measurements/tests results                                                |     |
| Table 16.2.2-41: 4 LMp on-the-spot measurements/tests – PM <sub>10</sub> TSPM                       | 98  |
| Table 16.2.2.4.2.4.1 Mp on the spot measurements/tests – settling dust                              | 100 |
| Table 16.2.2-43: 5. LMp on-the-spot measurements/tests – NO <sub>2</sub>                            | 103 |
| Table 16 2 2-44: 5 1 Mp NO <sub>2</sub> measurements/tests results                                  | 105 |
| Table 16.2.2-45: 5 LMp on-the-spot measurements/tests $= N\Omega_v$                                 | 106 |
| Table 16 2 2-46: 5 1 Mp NOv measurements/tests results                                              | 108 |
| Table 16.2.2-47: 5 LMp on-the-spot measurements/tests $= S\Omega_2$                                 | 100 |
| Table 16.2.2-48: 5 LMn SO2 measurements/tests results                                               |     |
| Table 16.2.2-10.0.1 LMp 002 include rements/tests = CO                                              |     |
| Table 16.2.2 = -0. 5. 1 Mn C.O. measurements/tests = 00                                             |     |
|                                                                                                     |     |

| Table 16.2.2-51: 5. LMp on-the-spot measurements/tests – PM <sub>10</sub> , TSPM                                             | 115  |
|------------------------------------------------------------------------------------------------------------------------------|------|
| Table 16.2.2-52: 5. LMp on-the-spot measurements/tests – settling dust                                                       | 117  |
| Table 16.2.2-53: 6. LMp on-the-spot measurements/tests – NO <sub>2</sub>                                                     | 119  |
| Table 16.2.2-54: 6. LMp NO <sub>2</sub> measurements/tests results                                                           | 121  |
| Table 16.2.2-55: 6. LMp on-the-spot measurements/tests – NOx.                                                                | 122  |
| Table 16.2.2-56: 6. LMp NOx measurements/tests results                                                                       | 124  |
| Table 16.2.2-57: 6. LMp on-the-spot measurements/tests – SO <sub>2</sub>                                                     | 125  |
| Table 16.2.2-58: 6. LMp SO <sub>2</sub> measurements/tests results                                                           | 127  |
| Table 16.2.2-59: 6. LMp on-the-spot measurements/tests – CO                                                                  | 128  |
| Table 16.2.2-60: 6. LMp CO measurements/tests results                                                                        | 130  |
| Table 16.2.2-61: 6. LMp on-the-spot measurements/tests – PM <sub>10</sub> , TSPM                                             | 131  |
| Table 16.2.2-62: 6. LMp on-the-spot measurements/tests – settling dust                                                       | 133  |
| Table 16.2.2-63: 6. LMp on-the-spot measurements/tests – O <sub>3</sub>                                                      | 133  |
| Table 16.2.2-64: GPS coordinates of the measurement points                                                                   | 136  |
| Table 16.2.2-65: Dates of the performed settling dust measurements/tests                                                     | 137  |
| Table 16.2.2-66: Time schedule of the performed on-the-spot measurements/tests                                               | 137  |
| Table 16.2.2-67: NO <sub>2</sub> immission measurement results                                                               | 138  |
| Table 16.2.2-68: NOx immission measurement results                                                                           | 138  |
| Table 16.2.2-69: SO <sub>2</sub> immission measurement results                                                               | 139  |
| Table 16.2.2-70: CO immission measurement results                                                                            | 139  |
| Table 16.2.2-71: PM <sub>10</sub> immission measurement results                                                              | 140  |
| Table 16.2.2-72: TSPM immission measurement results                                                                          | 140  |
| Table 16.2.2-73: Settling dust measurement results                                                                           | 141  |
| Table 16.2.2-74: O3 measurement results                                                                                      | 141  |
| Table 16.2.3-1: Summary assessment of 2012 baseline measurements/tests and air loadability                                   | 142  |
| Table 16.3.2-1: Surface cover and land use in 30 km radius test area – statistics for 2013.                                  | 145  |
| Table 16.3.2-2: Values of roughness-heigth parameter for various type surfaces                                               | 146  |
| Table 16.3.2-3: Values of roughness-height parameter for various type surfaces                                               |      |
| Table 16.3.2-4: Synoptic wind speed and relative frequency of wind direction according to Pasquill index [%] at Paks station |      |
| on annual level (1997-2010)                                                                                                  | 151  |
| Table 16.3.3-1: Limit of the studied air polluting materials                                                                 | 154  |
| Table 16.4.1-1: Data on the studied air polluting materials                                                                  | 155  |
| Table 16.4.2-1: Air polluting sources and their characteristics during the construction phase on the construction area       | 157  |
| Table 16.4.2-2: Characteristics of air polluting sources during plant construction                                           | 158  |
| Table 16.4.2-3: Characteristics of pollution sosurces of block transmission lines and a transmission line construction       | 159  |
| Table 16.4.2-4: Air polluting sources and their characteristics of transportation during the construction phase              |      |
| Table 16.4.3-1: Maximum concentration and impact zones calculated for the demolishing phase                                  |      |
| Table 16.4.3-2: Maximum concentrations and impact zones calculated for the landscaping period                                |      |
| Table 16 4 3-3: Maximum concentration and impact zones calculated for foundations                                            | 167  |
| Table 16.4.3-4: Maximum concentration and a impact zones calculated for the structure construction period                    | 170  |
| Table 16 4 3-5: Impacts of Paks II implementation onto the air quality under real meteorological conditions                  | 172  |
| Table 16.4.3-6: Impacts of Paks II implementation onto the air quality under conservative meteorological conditions          | 173  |
| Table 16.4.3-7. Impacts of transportation during Paks II implementation onto air quality under real and conservative         |      |
| meteorological conditions                                                                                                    | .173 |
| Table 16.5.1-1: Point sources and their characteristics during the operation period                                          |      |
| Table 16.5.1-2: Emission limits for diesel generators                                                                        |      |
| Table 16.5.1-3: EOV coordinates of points sources for the safety (stand-by) diesel generators                                |      |
| Table 16.5.1-4: Air polluting sources and their characteristics during the operation period – transportation                 | 179  |
| Table 16.5.1.5: Impacts of pilot operations of diesel generators                                                             | 180  |
| Table 16.5.1.6: Impacts of transportation onto the air quality during Paks II operation                                      | 181  |
| Table 16.5.1-1: Combined impact of Paks II and a Paks Nuclear Plant simultaneous operation onto air quality                  | 182  |
| Table Teleff in Common input of the and it and the trade at the inditional of the operation onto an quality minimum minimum. |      |

# **ABBREVIATIONS**

| Short name       | Full name                                                                                           |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| CO               | Carbon-monoxide                                                                                     |  |  |  |  |
| EüM              | Ministry of Health                                                                                  |  |  |  |  |
| EOV              | Unified National Projection                                                                         |  |  |  |  |
| EPA              | Environmental Protection Agency                                                                     |  |  |  |  |
| ERBE             | MVM ERBE Zrt.                                                                                       |  |  |  |  |
| FVM              | Ministry of Agriculture and Rural Development                                                       |  |  |  |  |
| GDAS             | Global Data Assimilation System - assimilation of surface and remote sensor measurements/tests      |  |  |  |  |
| GFS              | Global Forecasting System                                                                           |  |  |  |  |
| KöM              | Ministry of Environment                                                                             |  |  |  |  |
| LMp              | Point of measurement designated for defining baseline air pollution                                 |  |  |  |  |
| MSz              | Hungarian Standard                                                                                  |  |  |  |  |
| NCDC             | National Climatic Data Centre                                                                       |  |  |  |  |
| NCEP             | National Centres for Environmental Prediction                                                       |  |  |  |  |
| NO <sub>2</sub>  | Nitrogen-dioxide                                                                                    |  |  |  |  |
| NO <sub>x</sub>  | Nitrogen-oxides                                                                                     |  |  |  |  |
| NWS              | US National Weather Service                                                                         |  |  |  |  |
| O <sub>3</sub>   | Ozone                                                                                               |  |  |  |  |
| OKI              | National Institute of Environmental Health, Department of Environmental Health, Air Hygiene Section |  |  |  |  |
| PM <sub>10</sub> | Fraction of particulate matter below 10 µm                                                          |  |  |  |  |
| SO <sub>2</sub>  | Sulphur-dioxide                                                                                     |  |  |  |  |
| TSPM             | Total particulate matter                                                                            |  |  |  |  |
| VM               | Ministry of Rural Development                                                                       |  |  |  |  |
| WGS              | World Geodetic System                                                                               |  |  |  |  |

# **16 AMBIENT AIR**

# **16.1** LEGAL BACKGROUND – AREA CATEGORY, LIMITS

# 16.1.1 LAWS

#### Legislation of European Union (Decision, Directive)

European Parliament and Council Directive 2008/50/EC on ambient air quality and the program titled "Clean Air for Europe".

#### Laws

Act LIII. of 1995 - general rules for the protection of the environment

#### **Government decrees**

Government Decree 314/2005. (XII.25.) on environmental impact study and integrated pollution prevention control (IPPC) process Government Decree 306/2010. (XII.23.) on the protection of clean air

#### Minister decrees

Decree 4/2002. (X.7.) KvVM general rules for designating air pollution agglomerations and zones

Decree 4/2011. (I.14.) VM on air pollution limits and emission limits of stationary air polluting point sources

Decree 6/2011. (I. 14) VM on rules related to the analysis, control, measurement and assessment of air pollution levels and emission of stationary air polluting sources

# Standards applied during ambient air baseline test

MSZ ISO 7996:1993: defining nitrogen oxide mass concentration of ambient air. chemi-luminescence method

MSZ-ISO 2145637/1993: analysis of air gas pollution. To define sulphur dioxide content with UV-fluorescence method

MSZ-ISO 4224:2003: defining carbon monoxide in ambient air. Non-dispersive, IR method

MSZ-EN 12341:2000: Air quality. Defining the PM<sub>10</sub> fraction of particulate matter Reference method and on-the-spot test to determine equivalence of measurement methods and reference measurement method.

VDI 2463 Blatt 10:1996: Defining total particulate matter with gravimetry

MSZ 21456—26:1994: analysis of air as pollution. Defining ozone with UV-photometric method

MSZ 21454-1:1983: Analysis of solid (PM) pollution in air. Defining mass of settling dust (PM)

# Standards applied during propagation calculation

Meteorological characteristics of air pollutants propagation

MSZ 21457-4:2002 calculation of dynamic characteristics of surface air layer from relevant meteorological data.

MSZ 21457-7:2002 defining quantities typical for vortex mixing of air pollutants

Definition of air pollutant transmission

MSZ 21459-1:1981 calculation of polluting impacts of point sources

MSZ 21459-2:1981 calculation of polluting impacts of surface and line sources

# **16.1.2** AIR POLLUTION ZONES

Decree 4/2002. (X. 7.) KvVM general rules for designating air pollution agglomerations and zones defines the air pollution zones in the country. The zone category or zone type is an area designated in accordance with the air pollution, where the concentration of the pollutant is on longer term or periodically within any of the ranges defined in Appendix 5 of Decree 4/2011. (I. 14.) VM on air pollution limits and emission limits of stationary air polluting point sources (A; B; C; D; E; F; O-I; O-II categories).

Regarding the air pollutants under this study, Paks and region belong to the zone category "10. Other area of the country" in accordance with specified Appendix 1 of Decree 4/2002. (X. 7.) KvVM.

| Zone categories by air pollutants    |                 |                 |    |                         |                    |
|--------------------------------------|-----------------|-----------------|----|-------------------------|--------------------|
|                                      | SO <sub>2</sub> | NO <sub>2</sub> | CO | <b>PM</b> <sub>10</sub> | Ground level ozone |
| 10. Other area of the country - Paks | F               | F               | F  | E                       | 0-1                |

Comment:

E - the area, where the air load level is between the maximum and the lower limits for one or more air pollutants

F - the area, where the air load level is not higher than the lower limit

O-I - the area, where the ground level ozone concentration is higher than the limit (120 µg/m<sup>3</sup>)

Table 16.1.2-1: Paks air pollution category

| Sulphur-dioxide      |                                                  |                                                           |  |  |  |
|----------------------|--------------------------------------------------|-----------------------------------------------------------|--|--|--|
|                      | Health protection                                | Vegetation protection                                     |  |  |  |
| Higher<br>test limit | 60% of the 24-hour limit<br>75 μg/m <sup>3</sup> | 60% of the winter critical level<br>12 μg/m <sup>3</sup>  |  |  |  |
| Lower<br>test limit  | 40% of the 24-hour limit<br>50 μg/m <sup>3</sup> | 40% of the winter critical level 8 $\mu$ g/m <sup>3</sup> |  |  |  |

Table 16.1.2-2: Sulphur-dioxide maximum and minimum test limits

| Nitrogen-dioxide and nitrogen-oxides |                                            |                                          |                                                         |  |  |
|--------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------|--|--|
|                                      | Human healt                                | h protection                             | Vegetation and natural ecological<br>systems protection |  |  |
|                                      | hourly limit                               | annual limit                             | annual critical level                                   |  |  |
|                                      | NO <sub>2</sub>                            | NO <sub>2</sub>                          | NO <sub>x</sub>                                         |  |  |
| Maximum<br>test limit                | 70% of the limit<br>70 μg/m <sup>3</sup> * | 80% of the limit<br>32 µg/m <sup>3</sup> | 80% of the critical level<br>24 μg/m³                   |  |  |
| Lower<br>test limit                  | 50% of the limit<br>50 μg/m3 *             | 65% of the limit<br>26 μg/m <sup>3</sup> | 65% of the critical level<br>19,5 μg/m³                 |  |  |

Comment:

\* only 18 times / annum can be higher than the limit set for calendar year

Table 16.1.2-3: Nitrogen dioxide and nitrogen oxides maximum and minimum test limits

| Carbon-monoxide |                  |  |  |  |
|-----------------|------------------|--|--|--|
| 8-hour averag   |                  |  |  |  |
| Maximum         | 70% of the limit |  |  |  |
| test limit      | 3500 µg/m³       |  |  |  |
| Lower           | 50% of the limit |  |  |  |
| test limit      | 2500 µg/m³       |  |  |  |

Table 16.1.2-4: Carbon-monoxide maximum and minimum test limits

| PM <sub>10</sub> |                        |                      |  |  |  |
|------------------|------------------------|----------------------|--|--|--|
|                  | 24-hour average        | Annual average       |  |  |  |
| Higher           | a limit 70 %-a         | a limit 70 %-a       |  |  |  |
| test limit       | 35 μg/m <sup>3</sup> * | 28 µg/m³             |  |  |  |
| Lower            | a limit 50 %-a         | a limit 50 %-a       |  |  |  |
| test limit       | 25 μg/m <sup>3</sup> * | 20 μg/m <sup>3</sup> |  |  |  |

Comment:

\* only 35 times / annum can be higher than the limit set for calendar year

Table 16.1.2-5: PM<sub>10</sub> maximum and minimum test limits

In summary: in Paks and region the air quality is clean regarding SO<sub>2</sub>, NO<sub>2</sub>, CO, and the air load level is not higher than the lower test limit, and the ground level ozone concentration is higher than the limit (120  $\mu$ g/m<sup>3</sup>), the PM<sub>10</sub> category is "E", i.e. slightly loaded.

# 16.1.3 AIR POLLUTION LIMITS, TARGETS, GUIDANCE VALUES

| Air pollutant           | Hourly                                           | 24-ł   | nour | annual                     |
|-------------------------|--------------------------------------------------|--------|------|----------------------------|
|                         | (µg/m³)                                          | (μg    | /m³) | (µg/m³)                    |
| Sulphur dioxide         | 250                                              | 125    | 5    | 50                         |
| Nitrogen dioxide        | 100                                              | 85     |      | 40                         |
| Carbon-monoxide*        | 10 000                                           | 5 00   | 0    | 3 000                      |
| Particulate matter PM10 | - 50                                             |        | 40   |                            |
|                         | Maximum of daily 8-hour moving average concentra |        |      | g average concentration    |
|                         | (μg/m³)                                          |        |      |                            |
| Ozone                   | 120                                              |        |      |                            |
| Settling powder, non-   | 30 day                                           | annual |      | annual                     |
| toxic                   | (g/m², 30 day)                                   |        |      | (t/km <sup>2</sup> , year) |
|                         | 16                                               |        |      | 120                        |

Table 16.1.3-1: Air pollution health limits

| Air pollutant              | Hourly  | 24-hour | annual  |
|----------------------------|---------|---------|---------|
|                            | (µg/m³) | (μg/m³) | (µg/m³) |
| Particulate matter<br>TSPM | 200     | 100     | -       |

Table 16.1.3-2: Planned targets for air polluting materials

| Air pollutant               | 30-day<br>(g/m², 30 day) | annual<br>(t/km², year <sub>)</sub> |
|-----------------------------|--------------------------|-------------------------------------|
| Settling powder, non- toxic | 16                       | 120                                 |

Table 16.1.3-3: Settling dust tervezési guidance valuee

# **16.2** AIR QUALITY IN THE STUDIED AREA

We collected the air pollution data available on the site and within its 30 km environment for the ambient air and analysed and assessed the ambient air load using the collected and measured data.

# 16.2.1 PROCESSION AND ASSESSMENT OF AVAILABLE DATA AND INFORMATION -1987-2011

# 16.2.1.1 Environmental Impact Study for operation time extension of Paks Nuclear Plant - 2006

In the following sections we will quota the relevant parts of the Environmental Impact Study [16-1] including the colour codes used in the Study.

- 4. Status of the environment in the region of the nuclear plant during the pre-operation period
  - 4.3.1. Air quality during the pre-operation period

5. Present status of the environment in the region around the nuclear plant – impact of the plant onto the status of the environment

- 5.4.1 Air quality in the environment of the nuclear plant
  - 5.4.1.1 Air pollution between 1987-2005 (heating season)

The National Immission Measuring Network (managed by ÁNTSZ Tolna County Institute) has been measuring the settling dust load at Paks since 1987. No gas pollutants were measured.

In January 2002 the Lower-Duna Valley Environment Protection Inspectorate took over charge for the operation of the measuring network. There are 4 measuring stations in the city located as it follows:

Deák F. u. 4. Tolna u. 10, kindergarten Kishegyi u.20 kindergarten Vasút u. 6.

Table 5.4.1. and Figure 5.4.1. present the average settling dust data measured in the city between 1987-2005. As there was no gas pollutant measurement held in the city, the Table 5.4.2. and the Figure 5.4.2. present the data of Szekszárd city for the same period, reflecting the order of magnitude and the tendency. As shown, sulphur-dioxide pollution was low between 1987 and 1997, and a jumping-high data appeared in 1997-98, but remains well below the limit. Since 1998 the SO<sub>2</sub> values have remained at minimum levels. Nitrogen dioxide level has been volatilely increasing from the low level measured in 1987, and in 2002 very high concentration was measured, and the midyear average was also higher than the limit. The sulphur-dioxide and nitrogen dioxide pollution in Paks can be also assumed within this range. However, there is no indication for a similar peak as in 1997-98, because this was the time when gas supply was introduced in the city and it obviously results in lower polluting materials emission. For the same reasons it is also unlikely that high NO<sub>2</sub> concentration was present in Paks, similarly to the peak measured in 2002-2005 at Szekszárd. Nitrogen dioxide measurements can be recommended also in Paks in order that we can have reliable information related to nitrogen dioxide pollution not only though analogue. This initiative can be also underlined by the fact that the planned M6 motorway has been constructed as aby-pass road avoiding the city.

| Period                | Average               | Period                | Average               |
|-----------------------|-----------------------|-----------------------|-----------------------|
|                       | g/m <sup>2</sup> *30- |                       | g/m <sup>2</sup> *30- |
|                       | day                   |                       | day                   |
| 87 non-heating season | 11,82                 | 96 non-heating season | 5,44                  |
| 87-88 heating         | 7,59                  | 96-97 heating         | 4,85                  |
| 88 non-heating season | 8,47                  | 97 non-heating season | 5,15                  |
| 88-89 heating         | 5,51                  | 97-98 heating         | 5,77                  |
| 89 non-heating season | 6,49                  | 98 non-heating season | 4,86                  |
| 89-90 heating         | 3,69                  | 98-99 heating         | 4,22                  |
| 90 non-heating season | 10,75                 | 99 non-heating season | 7,39                  |
| 90-91 heating         | 4,19                  | 99-00 heating         | 7,45                  |
| 91 non-heating season | 5,17                  | 00 non-heating season | 6,40                  |
| 91-92 heating         | 3,55                  | 00-01 heating         | 1,94                  |
| 92 non-heating season | 5,61                  | 01 non-heating season | 6,00                  |
| 92-93 heating         | 18,83                 | 01-02 heating         | 4,18                  |
| 93 non-heating season | 5,36                  | 02 non-heating season | 4,91                  |
| 93-94 heating         | 7,51                  | 02-03 heating         | 7,15                  |
| 94 non-heating season | 7,41                  | 03 non-heating season | 7,55                  |
| 94-95 heating         | 9,71                  | 03-04 heating         | 3,94                  |
| 95 non-heating season | 5,22                  | 04 non-heating season | 4,51                  |
| 95-96 heating         | 5,37                  | 04-05 heating         | 5,15                  |

Figure 5.4.1: Air pollution at Paks 1987. April – 2005. March



Legend: Ülepedő por - settling dust, 30 nap - 30 days

|         | Sulphur-dio | ur-dioxide Nitrogen dioxide Settling dust |           |         |                    |           |                 |                    |                 |
|---------|-------------|-------------------------------------------|-----------|---------|--------------------|-----------|-----------------|--------------------|-----------------|
| Period  | Average     | Exceeding<br>limit                        | 98% freq. | Average | Exceeding<br>limit | 98% freq. | Average         | Exceeding<br>limit | 98% freq.       |
|         | µg/m³       | %                                         | µg/m³     | µg/m³   | %                  | µg/m³     | g/m²*30<br>days | %                  | g/m²*30<br>days |
| 87 NF   | 2,36        | 0,0                                       | 10,00     | 5,15    | 0,0                | 17,00     | 9,14            | 9,5                | 17,11           |
| 87-88 F | 7,56        | 0,0                                       | 30,60     | 6,22    | 0,0                | 15,00     | 5,38            | 0,0                | 12,53           |
| 88 NF   | 2,39        | 0,0                                       | 9,76      | 4,97    | 0,0                | 20,00     | 10,44           | 6,9                | 39,26           |
| 88-89 F | 9,54        | 0,4                                       | 49,20     | 4,54    | 0,0                | 19,60     | 4,73            | 0,0                | 11,07           |
| 89 NF   | 2,46        | 0,0                                       | 11,00     | 8,22    | 0,0                | 21,84     | 6,69            | 3,6                | 18,70           |
| 89-90 F | 15,32       | 0,4                                       | 81,60     | 10,39   | 0,0                | 30,92     | 5,46            | 3,6                | 18,07           |
| 90 NF   | 2,58        | 0,0                                       | 16,74     | 7,84    | 0,0                | 23,54     | 13,58           | 20,0               | 62,14           |
| 90-91 F | 14,20       | 0,0                                       | 78,28     | 15,99   | 0,0                | 38,00     | 4,92            | 3,4                | 11,84           |
| 91 NF   | 4,02        | 0,0                                       | 12,00     | 10,84   | 0,0                | 22,00     | 7,99            | 3,8                | 15,79           |
| 91-92 F | 11,31       | 0,0                                       | 52,84     | 16,96   | 0,0                | 37,00     | 5,89            | 3,4                | 15,40           |
| 92 NF   | 4,92        | 0,0                                       | 20,00     | 21,91   | 0,0                | 51,00     | 7,51            | 3,6                | 36,66           |
| 92-93 F | 5,39        | 0,0                                       | 32,00     | 16,90   | 0,0                | 56,80     | 12,11           | 17,2               | 71,57           |
| 93 NF   | 2,49        | 0,0                                       | 13,96     | 10,82   | 0,0                | 31,58     | 10,03           | 6,7                | 50,42           |
| 93-94 F | 3,42        | 0,0                                       | 14,96     | 7,70    | 0,0                | 27,94     | 5,73            | 0,0                | 12,27           |
| 94 NF   | 5,35        | 0,0                                       | 33,00     | 9,29    | 0,0                | 31,68     | 7,16            | 6,9                | 24,46           |

|         | Sulphur-die | oxide           |           | Nitrogen dioxide |                 |           | Settling dust   |                    |                 |
|---------|-------------|-----------------|-----------|------------------|-----------------|-----------|-----------------|--------------------|-----------------|
| Period  | Average     | Exceeding limit | 98% freq. | Average          | Exceeding limit | 98% freq. | Average         | Exceeding<br>limit | 98% freq.       |
|         | µg/m³       | %               | µg/m³     | µg/m³            | %               | µg/m³     | g/m²*30<br>days | %                  | g/m²*30<br>days |
| 94-95 F | 8,90        | 0,0             | 84,00     | 12,80            | 0,0             | 33,00     | 3,31            | 4,5                | 16,42           |
| 95 NF   | 6,95        | 0,0             | 62,18     | 14,00            | 0,0             | 36,88     | 5,26            | 7,7                | 19,89           |
| 95-96 F | 8,90        | 0,0             | 56,46     | 16,75            | 0,0             | 45,14     | 7,04            | 7,1                | 35,16           |
| 96 NF   | 6,20        | 0,0             | 37,90     | 16,07            | 0,0             | 54,34     | 6,33            | 5,9                | 22,61           |
| 96-97 F | 10,75       | 0,0             | 71,02     | 21,70            | 0,3             | 59,48     | 6,15            | 7,5                | 19,72           |
| 97 NF   | 25,72       | 5,9             | 150,00    | 21,34            | 0,0             | 59,00     | 7,32            | 4,8                | 16,10           |
| 97-98 F | 26,17       | 5,9             | 152,16    | 13,16            | 0,3             | 60,92     | 5,42            | 7,1                | 17,46           |
| 98 NF   | 10,38       | 0,6             | 76,62     | 18,01            | 0,6             | 54,56     | 8,97            | 11,9               | 27,14           |
| 98-99 F | 3,07        | 0,0             | 15,52     | 19,16            | 0,4             | 46,64     | 8,03            | 14,3               | 23,86           |
| 99 NF   | 2,32        | 0,0             | 16,28     | 18,90            | 0,0             | 47,00     | 10,29           | 11,9               | 25,23           |
| 99-00 F | 3,66        | 0,0             | 16,00     | 21,00            | 0,3             | 57,72     | 6,71            | 7,3                | 18,59           |
| 00 NF   | 1,49        | 0,0             | 5,24      | 25,02            | 0,0             | 62,12     | 6,05            | 4,9                | 17,18           |
| 00-01 F | 1,42        | 0,0             | 4,00      | 22,60            | 0,0             | 48,44     | 5,15            | 0,0                | 13,30           |
| 01 NF   | 1,27        | 0,0             | 3,00      | 16,70            | 0,0             | 43,00     | 7,03            | 0,0                | 14,60           |
| 01-02 F | 2,80        | 0,0             | 15,20     | 23,95            | 0,0             | 48,56     | 7,13            | 11,9               | 22,40           |
| 02 NF   | 2,11        | 0,0             | 7,96      | 29,99            | 3,6             | 106,86    | 11,08           | 7,9                | 34,94           |
| 02-03 F | 3,28        | 0,0             | 16,36     | 39,43            | 5,4             | 92,54     | 7,05            | 7,7                | 24,13           |
| 03 NF   | 1,32        | 0,0             | 3,62      | 45,43            | 14,9            | 147,36    | 6,93            | 5,3                | 20,42           |
| 03-04 F | 2,39        | 0,0             | 12,00     | 43,21            | 6,3             | 107,4     | 6,46            | 5,3                | 17,67           |
| 04 NF   | 1,25        | 0,0             | 3,00      | 37,77            | 8,4             | 102,62    | 5,28            | 0,0                | 11,90           |
| 04-05 F | 1,51        | 0,0             | 6,18      | 36,88            | 5,9             | 106,00    | 6,50            | 4,3                | 19,92           |

NF = non-heating season

F = heating season

Figure 5.4.2: Air pollution on Szekszárd 1987 – 2005



Legend: Ülepedő por - settling dust, 30 nap – 30 days

As Paks dust load diagram can demonstrate that at the time of commissioning of the nuclear plant Unit No. 4 the load dropped until 1992 from the 16 g/m<sup>2</sup> figure, which is near to the 30-day limit. From 1993 until 1994-end dust pollution significantly increased in the city, but could not reach the limit. We do not know the exact reason behind the high dust load, the brick factory and pollutions of natural origin might have some role in this event. After this the settling dust quantity moved at fairly low levels at Paks. If comparing with Szekszárd the quantity of settling dust is similar, and its 15-year trend is slightly volatile at medium levels.

5.4.1.2. Present status of air pollution

#### 5.4.1.2.1. Regional environment

Regarding air pollutants that cause environment acidisation, the region is moderately affected in a national-wide comparison (OMSZ data). Quantity of wet deposition:

| sulphur compounds           | 0,58 g/m², year |
|-----------------------------|-----------------|
| oxidised nitrogen-compounds | 0,42 g/m², year |

Based on data of the background-pollution measuring network operated by the National Meteorological Service and model calculations, the air quality (background-pollution) in the region that is not affected by local polluting sources is the following:

| nitrogen dioxide | 5,5 μg/m³               |
|------------------|-------------------------|
| sulphur-dioxide  | 5,0 µg/m <sup>3</sup>   |
| carbon-monoxide  | 200,0 µg/m <sup>3</sup> |
| ozone            | 63,8 µg/m <sup>3</sup>  |
|                  |                         |

These are low concentration data, except ozone.

Decree 4/2002. (X.7.) KvVM designates the air pollution zones in the country. Paks and region belongs to the following zone category (on the scale from A to F (order from lower to higher):

| sulphur-dioxide, nitrogen dioxide, carbon-monoxide and benzene | F category |
|----------------------------------------------------------------|------------|
| solids (PM <sub>10</sub> )                                     | E category |

Concentration ranges are attached to each zone category. Accordingly, concentration ranges defined for E and F zones are presented in Table 5.4.3.

|        | SO <sub>2</sub> | NO <sub>2</sub> | PM10     | CO         |
|--------|-----------------|-----------------|----------|------------|
| E zone | 50-75           | 26-32           | 10-14    | 2500-2500  |
| F zone | below 50        | below 26        | below 10 | below 2500 |
|        |                 |                 |          |            |

Table 5.4.3: Concentration ranges for E and F zones [µg/m<sup>3</sup>]

The competent environment protection inspectorate has the authority to define the polluted settlements within the zones. The relevant works are still in progress at various environment protection inspectorates.

5.4.1.2.4. Air polluting impacts of traffic

There are two sources for road traffic impacts: traffic on two roads connecting the national highway No. 6 and the plant. Traffic going in and out at the entry gate is also part of this impact.

We know the air polluting impacts of the national highway nr. 6 from model calculations prepared with the traffic data. The impact study prepared by VÁTI's order, as the general contractor (in 2000) present these calculations showing impacts of traffic on the planned M6 Motorway and M6 – 65 speedway project, along the national highway nr. 6. The specific emission figures defined by the KTI ..... were used for preparing these calculations, just like for defining any traffic emission. Implementation of the planned motorway will have favourable effects onto the current traffic of the national highway nr. 6. No increase can be expected in the traffic as a consequence of extension of the plant operation time.

Thus pollution caused by traffic on the road section around Paks [in accordance with Government Decree 120/2001. (VI.30.) on the amendment of Government Decree 21/2001. (II. 14.) on certain rules related to the protection of clean air] at 50 m band from the road centreline and under the most unfavourable meteorological circumstances:

| carbon-monoxide  | 85 µg/m³             |
|------------------|----------------------|
| nitrogen dioxide | 26 µg/m <sup>3</sup> |

Higher than limit concentration was not measured even at shoulder

We prepared measurements/tests at points along the northern and southern access roads leading to the plant and in the plant area exposed to incoming and outgoing traffic as part of the preliminary environment impact study. These measurements/tests were held during heating (March) and non-heating (May) periods, in a 2x1 month duration. We measured nitrogen dioxide, particulate matter, settling dust and carbon-monoxide pollution levels. Based on the measurement results we may state that no significant air pollution increment can be expected in the area, because no new emission sources appeared. Thus we had the view that no new measurement series was required. This kind of proposal was not presented either in the resolution of the competent authority that closed the preparatory process and prescribed the preparation of the Environmental Impact Study, so now we will repeat and present the results of measurements/tests performed in 2003.

The measuring points were selected at the following locations:

| <ol> <li>measuring point: next to<br/>southern access road;</li> </ol> | <ol><li>measuring point: next to northern access road;</li></ol> | 3. measuring point: in the plant area, at fire station |
|------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|
| Measurements/tests duration:<br>2003. March 11 Apri                    | I 08.                                                            | 2003. April 29 May 27.                                 |

OKK-National Environmental Health Centre performed the NO2, particulate matter and settling dust measurements/tests, and ENVIPLUS Engineering Office Ltd. the CO measurements/tests. The measurement protocols contain the detailed description of methods and results of measurements/tests. Particulate matter was measured only at measuring station nr. 3, because the conditions required for such measurements were available only on this station (energy supply).

Results from heating period

- Nitrogen dioxide pollution was low. Its level was fairly steady during the four weeks of measurement and remained within the range of 5-17,5 µg/m<sup>3</sup>, and the third week showed the highest level. Regarding area distribution the highest pollution was measured at measuring point nr. 3 in each period. Out of the four periods three times the measuring point nr. 1 showed the lowest pollution levels. The Table 5.4.12 presents the average results. (the table present rounded-up figures, in line with the measuring accuracy).
- Settling dust pollution was the highest at measuring point nr. 3, but the level reached only 50% of the limit, 8 g/m<sup>2</sup> \* 30 days.
- **Particulate matter (PM**<sub>10</sub>) pollution was 10 %, 42 % higher than the limit during the second and third weeks. During the first and last week pollution remained below the limit. Concentrations were between 43 and 71 µg/m<sup>3</sup>. The dust dominantly came from a non-consolidated soil.
- **Carbon-monoxide** concentrations were the highest at measuring station nr. 2. Level in every measurement remained well below limit and concentrations were between 750 and 2200 µg/m<sup>3</sup>.

| Period                                                   | 1. measuring point | 2. measuring point        | 3. measuring point |  |  |  |  |
|----------------------------------------------------------|--------------------|---------------------------|--------------------|--|--|--|--|
| Nitrogen dioxide (µg/m³)                                 |                    |                           |                    |  |  |  |  |
| 1. week                                                  | 6                  | 12                        | 8                  |  |  |  |  |
| 2. week                                                  | 8                  | 15                        | 7                  |  |  |  |  |
| 3. week                                                  | 12                 | 18                        | 16                 |  |  |  |  |
| 4. week                                                  | 5                  | 8                         | 7                  |  |  |  |  |
|                                                          | Settling d         | <b>ust</b> (g/m²,30 days) |                    |  |  |  |  |
| full month                                               | 1,0                | 6,0                       | 8,0                |  |  |  |  |
| Particulate matter PM <sub>10</sub> (µg/m <sup>3</sup> ) |                    |                           |                    |  |  |  |  |
| 1. week                                                  | n.a.               | n.a.                      | 48                 |  |  |  |  |
| 2. week                                                  | n.a.               | n.a.                      | 55                 |  |  |  |  |
| 3. week                                                  | n.a.               | n.a.                      | 71                 |  |  |  |  |
| 4. week                                                  | n.a.               | n.a.                      | 43                 |  |  |  |  |
| Carbon monoxide (µg/m <sup>3</sup> )                     |                    |                           |                    |  |  |  |  |
| 1. week                                                  | 1390               | 1980                      | 1040               |  |  |  |  |
| 2. week                                                  | 1160               | 1520                      | 1400               |  |  |  |  |
| 3. week                                                  | 1610               | 2200                      | 1680               |  |  |  |  |
| 4. week                                                  | 750                | 870                       | 810                |  |  |  |  |

Table 5.4.12: Pollution measured in March 2003

Results of measurement during the non-heating period:

- The nitrogen dioxide pollution was low and quite steady during the four weeks of the measurement and remained between 5-20 µg/m<sup>3</sup>, and the first and second week showed the higher levels. Regarding the area distribution the highest pollution was measured in every period at measuring point No. 2. Out of the four periods three times the measuring point nr. 1. showed the lowest pollution levels. The Table 5.4.13. presents the average results.
- The **settling dust** load was quite steady and well below the limit, 6-7 g/m<sup>2</sup> \* 30 days. The sample could not be assessed at measuring station nr. 3 due to third party intervention.
- The particulate matter (PM<sub>10</sub>) pollution on the second week was slightly above the limit. The concentration was between 23 and 54 µg/m<sup>3</sup>. The dust dominantly came from a sandy and non-consolidated soil.
- The carbon-monoxide concentrations were the highest at measuring station nr 2. Every measurement presented levels well below the limit, and concentrations were between 950 and 2420 µg/m<sup>3</sup>.

| Period                               | 1. measuring point | 3. measuring point                             |      |  |  |  |  |
|--------------------------------------|--------------------|------------------------------------------------|------|--|--|--|--|
| <b>Nitrogen dioxide</b> (μg/m³)      |                    |                                                |      |  |  |  |  |
| 1. week                              | 11                 | 15                                             | 12   |  |  |  |  |
| 2. week.                             | 9                  | 20                                             | 9    |  |  |  |  |
| 3. week                              | 5                  | 15                                             | 8    |  |  |  |  |
| 4. week                              | 8                  | 17                                             | 9    |  |  |  |  |
|                                      | Settling of        | dust (g/m²,30 days)                            |      |  |  |  |  |
| full month                           | 6                  | 7                                              | *    |  |  |  |  |
|                                      | Particulate        | e matter PM <sub>10</sub> (µg/m <sup>3</sup> ) |      |  |  |  |  |
| 1. week                              | n.a.               | n.a.                                           | 31   |  |  |  |  |
| 2. week.                             | n.a.               | n.a.                                           | 54   |  |  |  |  |
| 3. week                              | n.a.               | n.a.                                           | 23   |  |  |  |  |
| 4. week                              | n.a.               | n.a.                                           | 27   |  |  |  |  |
| Carbon-monoxide (µg/m <sup>3</sup> ) |                    |                                                |      |  |  |  |  |
| 1. week                              | 950                | 1200                                           | 800  |  |  |  |  |
| 2. week.                             | 1440               | 2420                                           | 1750 |  |  |  |  |
| 3. week                              | 1200               | 1800                                           | 1540 |  |  |  |  |
| 4. week                              | 1330               | 1300                                           | 1120 |  |  |  |  |

\* third party intervention, assessment is not possible

Table 5.4.13: Pollution measured in May 2003

#### Emission from road traffic

2004 traffic data present total traffic in the region of the nuclear plant using traffic count for national road no. 6: 11 059 vehicle/day (KTI traffic count data). Based on this figure, the total average traffic going into the plant is 1000 vehicle/day. Peak hour traffic is 10% of the daily traffic. Thus emission:

```
based on traffic on road no. 6.:
CO 7215 g/km, hour; CH 1776 g/km, hour; NO<sub>x</sub> 3330 g/km, hour; SO<sub>2</sub> 44 g/km, hour;
```

based on traffic on the access road to the nuclear plant: CO 720 g/km, hour; CH 178 g/km, hour; NOx 330 g/km, hour; SO<sub>2</sub> 4 g/km, hour.

We used the specific figures prepared by KTI (Institute for Transport Sciences Non-profit Ltd.)

5.4.1.2.5. Assessment of the current air pollution based on the measurements/tests

Table 5.4.14 presents air pollution health limits, in abstracts. Simplified abstract, without tolerance limit, in accordance with Decree 4/2004.(IV.7.) KvVM-ESzCsM-FVM amending Decree 14/2001. (V.9.) KöM-EüM-FVM on emission limits for air pollution and stationary air polluting point sources

| Air pollutant                       | hourly                    | 24        | hour                       | annı             | ıal              |
|-------------------------------------|---------------------------|-----------|----------------------------|------------------|------------------|
|                                     | (µg/m³)                   | (μ        | g/m³)                      | (µg/n            | т <sup>3</sup> ) |
| Sulphur dioxide                     | 250                       | 1         | 25                         | 50               | )                |
| Nitrogen dioxide                    | 100                       | ••        | 85                         | 40               | )                |
| Nitrogen oxides                     | 200                       | 1         | 50                         | 70               | )                |
| Carbon monoxide*                    | 10 000                    | 5 (       | )00*                       | 3 00             | 00               |
| Particulate matter PM <sub>10</sub> | -                         | !         | 50                         | 40               |                  |
| Particulate matter TSPM             | 200                       | 100       |                            | 50               |                  |
| Lead                                | -                         | -         |                            | 0,3              |                  |
| Benzene ***                         | -                         |           | 10                         | 5                |                  |
|                                     | Daily 8-hour n            | noving av | verage conc                | entration maximu | Im               |
|                                     | -                         |           | $(\mu g/m^3)$              |                  |                  |
| Ozone                               | 120**                     |           |                            |                  |                  |
|                                     | 30 days                   |           | annual                     |                  |                  |
| Settling dust , non-toxic           | (g/m <sup>2</sup> , 30 da | ys)       | (t/km <sup>2</sup> , year) |                  |                  |
| <b>-</b>                            | 16                        |           | 120                        |                  |                  |

\* daily 8-hour moving average concentration maximum

\*\* maximum values shall be selected from 8-hour moving average values based on the hourly average figures \*\*\* carcinogenic air pollutant

Measurements performed in the environment of Paks Nuclear Plant are assessed in the following summary

| Measuring station                   | Period                             | Nitrogen<br>dioxide<br>(µg/m³) | Carbon<br>monoxide<br>(µg/m <sup>3</sup> ) | particulate<br>matter<br>(µg/m <sup>3</sup> ) | settling dust<br>(g/m <sup>2</sup> , 30<br>days) |
|-------------------------------------|------------------------------------|--------------------------------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| 1. measuring station                | heating season                     | 8                              | 1228                                       | -                                             | 0,9                                              |
| next to south access road           | non-heating season                 | 8                              | 1230                                       | -                                             | 6,1                                              |
| 2. measuring station                | heating season                     | 13                             | 1643                                       | -                                             | 5,6                                              |
| next to north access road           | non-heating season                 | 17                             | 1680                                       | -                                             | 7,1                                              |
| <ol><li>measuring station</li></ol> | heating season                     | 9                              | 1233                                       | 54                                            | 8,0                                              |
| behind fire station                 | non-heating season                 | 9                              | 1303                                       | 34                                            | -                                                |
| Total measuring station             | heating-non-heating season average | 10,7                           | 1385                                       | 44                                            | 5,5                                              |

Table 5.4.15: Air pollution average values in the environment of Paks Nuclear Plant 2003.

We can draw the following conclusions from the table and figures:

- The average of two measurements cycle was is below the limit for every analysed material. Settling dust, nitrogen dioxide and carbon-monoxide concentration levels were well below the permitted limit. However the particulate matter load was several times above the permitted limit.
- There is no significant difference between values measured in heating and non-heating periods, except settling dust load, which is higher during the non-heating period.
- Regarding nitrogen dioxide and carbon-monoxide, 2. measuring station (north entry road) is more polluted than the other two stations. This measuring point was located closer to the road.
- **Particulate matter was the critical pollutant.** Out of 8 tests higher than limit concentration was measured on 3 days. The exceeding limit was within the range of 8-42%. Particulate matter most probably comes into the air pre-dominantly from unconsolidated, sandy soil.
- Air pollution arising from access roads and plant area does not hit any residential area. Impact of air pollution from the plant practically does not spread beyond the plant area, where limits specified by safety regulations in effect in the working area shall be followed.

Concentration of "conventional" (i.e. not radiating) air pollutants present in the nuclear plant environment cannot cause any damage to health, or unpleasant and disturbing effects. The air pollution does not cause any other damage to the environment and the ecology. Air pollution measured for the protective forest is not harmful, and its effect is extremely advantageous to the air quality.

Table 5.4.14: Air pollution health care limits ( $\mu q/m^3$ )

# 16.2.1.2 National Air Pollution Measuring Network

In Hungary the air quality was controlled on stations operated by the Regional Immission Control (RIV) reporting to the National Air Pollution Measuring Network (OLM) (previously: National Immission Measuring Network (OIH)) and at the so-called Phare monitor stations. The networks were established and operated under the professional control of OKI Air Hygienic Section. RIV measuring stations measured the daily average NO<sub>2</sub>, SO<sub>2</sub> concentration and 30-day quantity of settling dust (PM), whereas the Phare monitor stations measured the NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, CO, ozone and PM<sub>10</sub> concentration in every 30 minutes.

In 2002 the measuring network was transferred under the control of the local environment protection inspectorates. The National Meteorological Service, Climate and Air Environment Department, Clean Air Protection Reference Centre (before: VITUKI KHT LRK Air Pollution Data Centre, even before KGI-KVI RKL Air Pollution Data Centre) collects and 'validates' the measured data.

From an environmental health care aspects, the National Environmental Health Institute (former name: Fodor József National Public Health Centre National Environmental Health Institute) processes and assesses the data.

Annual air quality assessment is published under the title: "Recapitulative assessment on Hungary's air quality".

Results of measuring network are assessed based on the air pollution index and statistical indicators. Results are graphically presented on air pollution maps.

#### Assessment based on air pollution index

The air pollution index was determined for each pollutant using the annual average values. Values presented with the colour codes applied for the assessment can be quantified based on the following table.

| Index | Értékelés             | Nitrogén-<br>oxidok<br>(mint NO <sub>2</sub> )<br>(μg/m <sup>3</sup> )<br>középérték<br>éves | Nitrogén-dioxid<br>(µg/m³)<br>középérték<br>éves | Kén-dioxid<br>(μg/m³)<br>középérték<br>éves | Ózon<br>(µg/m³)<br>középérték<br>éves* | PM10<br>(µg/m³)<br>középérték<br>éves | TSPM<br>(µg/m³)<br>középérték<br>éves | Szén-monoxid<br>(µg/m³)<br>középérték<br>éves | Benzol<br>(µg/m³)<br>középérték<br>éves |
|-------|-----------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------|
| 1     | kiváló                | 0-28                                                                                         | 0-16                                             | 0-20                                        | 0-48                                   | 0-16                                  | 0-20                                  | 0-1200                                        | 0-2                                     |
| 2     | jó                    | 28-56                                                                                        | 16-32                                            | 20-40                                       | 48-96                                  | 16-32                                 | 20-40                                 | 1200-2400                                     | 2-4                                     |
| 3     | megfelelő             | 56-70                                                                                        | 32-48                                            | 40-50                                       | 96-120                                 | 32-40                                 | 40-50                                 | 2400-3000                                     | 4-9                                     |
| 4     | szennyezett           | 70-140                                                                                       | 48-80                                            | 50-100                                      | 120-220                                | 40-80                                 | 50-100                                | 3000-6000                                     | 9-10                                    |
| 5     | erősen<br>szennyezett | 140-                                                                                         | 80-                                              | 100-                                        | 220-                                   | 80-                                   | 100-                                  | 6000-                                         | 10-                                     |

Index – Index Értékelés – Assessment Nitrogén-oxidok – Nitrogen oxides Nitrogén-dioxid – Nitrogen-dioxide Kén-dioxid – Sulphur-dioxide Ózon – Ozone Szén-monoxid – Carbor-monoxide Benzol – Benzene középérték – mid-rate éves – annual kiváló – excellent jó – good megfelelő – acceptable szennyezett – polluted erősen szennyezett – extremely polluted

Figure 16.2.1-1: Colour codes applied for air pollution index

#### Assessment based on statistical indicators

Assessment is performed using the following statistical indicators:

- $\circ$  annual average (µg/m<sup>3</sup> and g/m<sup>2\*</sup>30 days),
- $\circ$  maximum (µg/m<sup>3</sup> and g/m<sup>2</sup>\*30 days),
- o 50% percentile [50 minutes.],
- o 98% percentile [98 minutes.],
- o 99,9% percentile [99,9 minutes.],
- o theoretical number of data [theoretical number]
- o number of measurement data available on the settlement and in the region [data number],
- o value of data availability expressed in percentage [data availability %],
- number of 24-hour average values in excess of the limit on the settlements and in the regions hourly (for settling dust: 30-day data) [limit. average. number],
- o percentage of limit excess cases [limit, average, %],
- o and indicator calculated for the annual average indicator (annual average/annual limit).

Regarding OIH and OLM, only the air settling dust load values were measured on the site and in the vicinity of the site at Paks, and no NO<sub>x</sub>, NO<sub>2</sub>, SO<sub>2</sub>, CO, PM<sub>10</sub> immission data were measured.

#### 16.2.1.2.1 2007 recapitulative assessment of Hungary's air quality based on manual measuring network [16-2]

There is no automatic measuring station in operation within 30 km zone from Paks.

Manual measuring stations are working in several cities, their location is shown on Figure 16.2.1-2 and Table 16.2.1-1.



Helyjelző - place marker, utca - street, szennyvíztisztító - sewage cleaning plant, paprika üzem - pepper processing plant

Figure 16.2.1-2: Location of manual measuring stations

| Measuring stations                                                                                                           | measured air pollutant                            | Location                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paks<br>Kishegyi u 58.<br>Deák Ferenc u 4.                                                                                   | Settling dust                                     | Traffic<br>Traffic                                                                                                                                                                                                                                                                                                                                                                                        |
| Dunaföldvár<br>Kossuth u. 2.<br>Rákóczi u. 16.                                                                               | Settling dust                                     | City centre. Main polluting source: heating, traffic.<br>Traffic, high-density residential area. Main polluting source: traffic and heating.                                                                                                                                                                                                                                                              |
| Kalocsa<br>Alkotmány u 49. Paprika<br>plant<br>Szent I. krt. 35. ÁNTSZ<br>building<br>Érsekkert u 1.<br>Communal institution | NO <sub>2</sub> , Settling dust                   | Industrial measuring point high-density residential area. village-type environment.<br>Main polluting source: industrial combustion machinery, traffic, residential heating.<br>City centre, high-density residential area. Main polluting source: traffic, communal<br>operation, institutions, residential heating.<br>Recreation are (park, sports field). Main polluting source: residential heating. |
| Kiskőrös<br>Akasztó u. 49.<br>Petőfi Sándor tér 1.<br>Izsáki u 13.                                                           | Settling dust                                     | -                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Szekszárd</b><br>Tartsay u 4.<br>Garay tér<br>Vörösmarty u 2.                                                             | NO <sub>2</sub> , SO <sub>2</sub> , Settling dust | Traffic, next to road no. 56<br>City centre, heavy traffic road nearby<br>City centre, heavy traffic road nearby                                                                                                                                                                                                                                                                                          |

Table 16.2.1-1: Manual measuring stations characteristics - 2007

The 2007 air quality assessment was prepared using the methods defined by Decree 17/2001. (VIII.3.) KöM and its amendments and the health limits defined by Decree 14/2001 (V.9) KöM-EüM-FVM and its amendments.

#### Air pollution index

The air pollution index was determined for NO<sub>2</sub>, SO<sub>2 and</sub> ÜP based on annual average values, and for the aggregated air pollution index of cities/villages based on the polluting materials with the highest index measured in the cities/villages. The following table presents the 2007 aggregated results of assessment based on the air pollution index.

| Cottlomont  |                 | Aggregated                                    |          |          |  |
|-------------|-----------------|-----------------------------------------------|----------|----------|--|
| Settlement  | NO <sub>2</sub> | NO <sub>2</sub> SO <sub>2</sub> Settling dust |          | Index    |  |
| Paks        | -               | -                                             | good (2) | good (2) |  |
| Dunaföldvár | -               | -                                             | good (2) | good (2) |  |
| Kalocsa     | excellent (1)   | -                                             | good (2) | good (2) |  |
| Kiskőrös    | -               | -                                             | good (2) | good (2) |  |
| Szekszárd   | good (2)        | excellent (1)                                 | good (2) | good (2) |  |

Table 16.2.1-2: Air pollution Index - 2007

#### Statistical indicators

The following table presents the statistical indicators for the studied settlements based on settling dust and nitrogen dioxide annual average figures measured in 2007:

|               | Annual based on 24-hour averages |                     |       |       |        |                  |      |       |               |               |           |
|---------------|----------------------------------|---------------------|-------|-------|--------|------------------|------|-------|---------------|---------------|-----------|
| Settlement    | average                          | max.                | 50 %. | 98 %. | 99,9%  | theore-<br>tical | data | data  | limit<br>avr. | limit<br>avr. | Indicator |
|               | g/m²*30nap<br>µg/m³              | g/m²*30nap<br>µg/m³ | %     | %     | %      | pcs              | pcs  | %     | pcs           | %             | l/In      |
| Settling dust |                                  |                     |       |       |        |                  |      |       |               |               |           |
| Paks          | 5,62                             | 12,1                | 4,7   | 10,84 | 12,04  | 24               | 22   | 91,67 | 0             | 0             | 0,562     |
| Dunaföldvár   | 6,6                              | 11,2                | 6,2   | 10,65 | 11,17  | 24               | 24   | 100   | 0             | 0             | 0,66      |
| Kalocsa       | 6,63                             | 33                  | 5     | 27,56 | 32,73  | 46               | 35   | 76,09 | 0             | 0             | 0,663     |
| Kiskőrös      | 5,46                             | 18                  | 5     | 17,32 | 17,97  | 35               | 35   | 100   | 0             | 0             | 0,546     |
| Szekszárd     | 6,51                             | 11,2                | 6,35  | 10,51 | 11,17  | 49               | 44   | 89,8  | 0             | 0             | 0,651     |
| NO2           |                                  |                     |       |       |        |                  |      |       |               |               |           |
| Kalocsa       | 15,71                            | 96                  | 13    | 46    | 79,05  | 1095             | 998  | 91,14 | 1             | 0,1           | 0,34      |
| Szekszárd     | 33,33                            | 127                 | 26    | 103   | 126,56 | 514              | 437  | 85,02 | 22            | 5,03          | 0,72      |

Table 16.2.1-3: Air pollution determined by statistical indicators - 2007

#### Air pollution map



Jelmagyarázat – Legend, kiváló – excellent, jó – good, megfelelő – acceptable, szennyezett – polluted, erősen szennyezett – extremely polluted

Figure 16.2.1-3: Air pollution map - 2007

# 16.2.1.2.2 2008 recapitulative assessment of Hungary's air quality based on manual measuring network [16-3]

| Measuring stations |                                    | Measured<br>components | Measured Measuring stations |                                                        | Measured<br>components |
|--------------------|------------------------------------|------------------------|-----------------------------|--------------------------------------------------------|------------------------|
| Paks               | Kishegyi u 58.<br>Deák Ferenc u 4. | Settling dust          | Kalocsa                     | Alkotmány u 49.<br>Szent I. krt. 35.<br>Érsekkert u 1. | NO2                    |
| Dunaföldvár        | Kossuth u. 2.<br>Rákóczi u. 16.    | Settling dust          | Szekszárd                   | Tartsay u 4.<br>Garay tér<br>Vörösmarty u 2.           | NO <sub>2</sub>        |

The following table presents the manual measuring stations in operation in 2008.

Table 16.2.1-4: A manual measuring stations characteristics i - 2008

The air quality assessment was also in 2008 prepared using the methods defined in Decree 17/2001. (VIII.3.) KöM and amendments, and health limits defined by Decree 14/2001 (V.9) KöM-EüM-FVM and amendments.

#### Air pollution index

| 0.44        |                 | Aggregated      |               |                |  |
|-------------|-----------------|-----------------|---------------|----------------|--|
| Settlement  | NO <sub>2</sub> | SO <sub>2</sub> | Settling dust | Index          |  |
| Paks        | -               | -               | good (2)      | good (2)       |  |
| Dunaföldvár | -               | -               | good (2)      | good (2)       |  |
| Kalocsa     | excellent (1)   | -               | -             | excellent (1)  |  |
| Szekszárd   | acceptable (3)  | -               | -             | acceptable (3) |  |

Table 16.2.1-5: Air pollution Index - 2008

# Statistical indicators

|             | Annual               |                      |       | base  | ed on 24-hour | average va      | lues |       |               |               |           |
|-------------|----------------------|----------------------|-------|-------|---------------|-----------------|------|-------|---------------|---------------|-----------|
| Settlement  | average              | max.                 | 50 %. | 98%   | 99,9%.        | theoreti<br>cal | data | data  | limit<br>avr. | limit<br>avr. | Indicator |
|             | g/m²*30days<br>µg/m³ | g/m²*30days<br>µg/m³ | %     | %     | %             | pcs             | pcs  | %     | pcs           | %             | l/In      |
|             | Settling dust        |                      |       |       |               |                 |      |       |               |               |           |
| Paks        | 5,09                 | 10,03                | 4,6   | 9,77  | 10,27         | 24              | 23   | 95,83 | 0             | 0             | 0,509     |
| Dunaföldvár | 6,23                 | 11,2                 | 6,25  | 10,86 | 11,18         | 24              | 22   | 91,67 | 0             | 0             | 0,623     |
|             | NO <sub>2</sub>      |                      |       |       |               |                 |      |       |               |               |           |
| Kalocsa     | 12,51                | 70                   | 11    | 36    | 60,98         | 1053            | 1008 | 95,73 | 0             | 0             | 0,284     |
| Szekszárd   | 37,82                | 152                  | 31    | 118   | 149,14        | 1071            | 956  | 89,26 | 67            | 7,01          | 0,859     |



#### Air pollution map



Jelmagyarázat – Legend, Összesített index - Aggregated Index, kiváló – excellent, jó – good, megfelelő – acceptable, szennyezett – polluted, erősen szennyezett – extremely polluted

#### 16.2.1.2.3 2009 recapitulative assessment Hungary's air quality based on manual measuring network [16-4]

The following table presents characteristics of manual measuring stations providing the measurement results.

| Measuring stations |                                    | Measured<br>components | Measu     | uring stations                                         | Measured<br>components |
|--------------------|------------------------------------|------------------------|-----------|--------------------------------------------------------|------------------------|
| Paks               | Kishegyi u 58.<br>Deák Ferenc u 4. | Settling dust          | Kalocsa   | Alkotmány u 49.<br>Szent I. krt. 35.<br>Érsekkert u 1. | NO <sub>2</sub>        |
| Dunaföldvár        | Kossuth u. 2.<br>Rákóczi u. 16.    | Settling dust          | Szekszárd | Tartsay u 4.<br>Garay tér<br>Vörösmarty u 2.           | NO <sub>2</sub>        |

Table 16.2.1-7: Characteristics of manual measuring stations - 2009

Air quality assessment in 2009 was also prepared in accordance with the methods specified in Decree 17/2001. (VIII. 3.) KöM and its amendments, and the health care limits defined in Decree 14/2001 (V. 9) KöM-EüM-FVM and amendments.

#### Air pollution index

| Sottlement  | Air po          | ollution Index | Aggregated    |  |
|-------------|-----------------|----------------|---------------|--|
| Settiement  | NO <sub>2</sub> | Settling dust  | Index         |  |
| Paks        | -               | good (2)       | good (2)      |  |
| Dunaföldvár | -               | excellent (1)  | excellent (1) |  |
| Kalocsa     | excellent (1)   | -              | excellent (1) |  |
| Szekszárd   | good (2)        | -              | good (2)      |  |

Table 16.2.1-8: Air pollution Index - 2009

Figure 16.2.1-4: Summarised air pollution map - 2008

# Statistical indicators

| Settlement                                        | Annual<br>average    | max.                  | 50 %. | 98%   | 99,9%  | theore-<br>tical | data | data  | limit<br>avr. | limit<br>avr. | Indicator |
|---------------------------------------------------|----------------------|-----------------------|-------|-------|--------|------------------|------|-------|---------------|---------------|-----------|
| oottioniont                                       | g/m²*30days<br>µg/m³ | g/m²*30 days<br>µg/m³ | %     | %     | %      | pcs              | pcs  | %     | pcs           | %             | l/In      |
| Settling dust – based on 30-day average values    |                      |                       |       |       |        |                  |      |       |               |               |           |
| Paks                                              | 6,59                 | 15,6                  | 6,25  | 14    | 15,52  | 24               | 22   | 91,67 | 0             | 0             | 0,66      |
| Dunaföldvár                                       | 5,78                 | 16,3                  | 4,9   | 13,88 | 16,18  | 24               | 23   | 95,83 | 1             | 4,35          | 0,58      |
| based on NO <sub>2</sub> – 24-hour average values |                      |                       |       |       |        |                  |      |       |               |               |           |
| Kalocsa                                           | 10,35                | 56                    | 8     | 31    | 41,94  | 1032             | 1029 | 99,71 | 0             | 0             | 0,25      |
| Szekszárd                                         | 30,09                | 332                   | 26    | 81,42 | 280,91 | 1046             | 930  | 88,91 | 15            | 1,61          | 0,72      |

#### Table 16.2.1-9: Air pollution determined by statistical indicators - 2009

#### Air pollution map



Jelmagyarázat – Legend, Összesített index - Aggregated Index, kiváló – excellent, jó – good, megfelelő – acceptable, szennyezett – polluted, erősen szennyezett – extremely polluted

Figure 16.2.1-5: Summarised air pollution map - 2009

#### 16.2.1.2.4 2010 recapitulative assessment Hungary's air quality based on manual measuring network [16-5]

The following table presents location of the manual measuring stations in operation.

| Measuring stations |                                    | Measured<br>components | Measu     | uring stations                                         | Measured<br>components |
|--------------------|------------------------------------|------------------------|-----------|--------------------------------------------------------|------------------------|
| Paks               | Kishegyi u 58.<br>Deák Ferenc u 4. | Settling dust          | Kalocsa   | Alkotmány u 49.<br>Szent I. krt. 35.<br>Érsekkert u 1. | NO <sub>2</sub>        |
| Dunaföldvár        | Kossuth u. 2.<br>Rákóczi u. 16.    | Settling dust          | Szekszárd | Tartsay u 4.<br>Garay tér<br>Vörösmarty u 2.           | NO <sub>2</sub>        |

Table 16.2.1-10: Characteristics of manual measuring stations - 2010

Air quality assessment in 2010 was also prepared in accordance with the methods specified in Decree 17/2001. (VIII. 3.) KöM and its amendments and health care limits defined in Decree 14/2001 (V. 9) KöM-EüM-FVM and amendments.

#### Air pollution index

| Sottlement  | Air po          | llution Index | Aggregated    |
|-------------|-----------------|---------------|---------------|
| Settlement  | NO <sub>2</sub> | Settling dust | Index         |
| Paks        | -               | good (2)      | good (2)      |
| Dunaföldvár | -               | good (2)*     | good (2)      |
| Kalocsa     | excellent (1)   | -             | excellent (1) |
| Szekszárd   | good (2)        | -             | good (2)      |

Comment: \* data availability lower than 75%

Table 16.2.1-11: Air pollution Index - 2010

| Settlement                                     | Annual<br>average                                 | max.                  | 50 %. | 98 %. | 99,9 %. | theore-<br>tical | data | data  | limit<br>avr. | limit<br>avr. | Indicator |
|------------------------------------------------|---------------------------------------------------|-----------------------|-------|-------|---------|------------------|------|-------|---------------|---------------|-----------|
| Gettlement                                     | g/m²*30 days<br>µg/m³                             | g/m²*30 days<br>µg/m³ | %     | %     | %       | pcs              | pcs  | %     | pcs           | %             | l/In      |
| Settling dust – based on 30-day average values |                                                   |                       |       |       |         |                  |      |       |               |               |           |
| Paks                                           | 5,15                                              | 13,5                  | 4,9   | 11,6  | 13,41   | 24               | 20   | 83,33 | 0             | 0             | 0,52      |
| Dunaföldvár                                    | 6,75                                              | 16,1                  | 6,35  | 14,46 | 16,02   | 36               | 22   | 61,11 | 1             | 4,55          | 0,68      |
|                                                | NO <sub>2</sub> - based on 24-hour average values |                       |       |       |         |                  |      |       |               |               |           |
| Kalocsa                                        | 11,12                                             | 50                    | 10    | 31,52 | 46,86   | 1083             | 1025 | 94,64 | 0             | 0             | 0,28      |
| Szekszárd                                      | 28,25                                             | 328                   | 23    | 76    | 327,14  | 1095             | 864  | 78,90 | 12            | 1,39          | 0,71      |

#### Statistical indicators

Table 16.2.1-12: Air pollution determined by statistical indicators - 2010

#### Air pollution map



Jelmagyarázat – Legend, Összesített index - Aggregated Index, kiváló – excellent, jó – good, megfelelő – acceptable, szennyezett – polluted, erősen szennyezett – extremely polluted

Figure 16.2.1-6: Summarised air pollution map – 2010

#### 16.2.1.2.5 2011. recapitulative assessment Hungary's air quality based on manual measuring network [16-6]

The following table presents location of manual measuring stations in operation.

| Measuring stations |                                    | Measurement<br>components | Meas      | uring stations                                         | Measurement<br>components |
|--------------------|------------------------------------|---------------------------|-----------|--------------------------------------------------------|---------------------------|
| Paks               | Kishegyi u 58.<br>Deák Ferenc u 4. | Settling dust             | Kalocsa   | Alkotmány u 49.<br>Szent I. krt. 35.<br>Érsekkert u 1. | NO <sub>2</sub>           |
| Dunaföldvár        | Kossuth u. 2.<br>Rákóczi u. 16.    | Settling dust             | Szekszárd | Tartsay u 4.<br>Garay tér<br>Vörösmarty u 2.           | NO <sub>2</sub>           |

Table 16.2.1-13: Characteristics of manual measuring stations - 2011

The 2011 air quality assessment was prepared using methods defined in Decree 6/2011. (I.14.) VM, based on health limits defined in Decree 4/2011 (I.14) VM. The Decree in 2011 terminated limits for settling dust, thus they are not presented in the statistical tables. Sampling of nitrogen-dioxide was held daily or every second day, while settling dust in 30-day cycles. Though settling dust limits were terminated, categories in the air pollution index assessment were not modified. The tables don't show the number of limit excess, their % and the indicators among the statistical indicators.

#### Air pollution index

| Sottlement  | Air po          | ollution Index | Aggregated    |
|-------------|-----------------|----------------|---------------|
| Settlement  | NO <sub>2</sub> | Settling dust  | Index         |
| Paks        | -               | excellent (1)  | excellent (1) |
| Dunaföldvár | -               | good (2)       | good (2)      |
| Kalocsa     | excellent (1)   | -              | excellent (1) |
| Szekszárd   | good (2)        | -              | good (2)      |

Table 16.2.1-14: Air pollution Index - 2011

#### Statistical indicators

| Settlement                                        | Annual<br>average     | max.                  | 50 %. | 98 %. | 99,9 %. | theore-<br>tical | data | data  | limit<br>avr. | limit<br>avr. | Indicator |
|---------------------------------------------------|-----------------------|-----------------------|-------|-------|---------|------------------|------|-------|---------------|---------------|-----------|
| oettiement                                        | g/m²*30 days<br>µg/m³ | g/m²*30 days<br>µg/m³ | %     | %     | %       | pcs              | pcs  | %     | pcs           | %             | l/In      |
| Settling dust – 30 days average                   |                       |                       |       |       |         |                  |      |       |               |               |           |
| Paks                                              | 3,37                  | 8,6                   | 2,5   | 8,38  | 8,59    | 24               | 23   | 95,83 | -             | -             | -         |
| Dunaföldvár                                       | 5,08                  | 12,7                  | 4,7   | 11,03 | 12,62   | 24               | 23   | 95,83 | -             | -             | -         |
| NO <sub>2</sub> - based on 24-hour average values |                       |                       |       |       |         |                  |      |       |               |               |           |
| Kalocsa                                           | 15,03                 | 59                    | 14    | 34,78 | 53,95   | 1014             | 1012 | 99,8  | 0             | 0             | 0,38      |
| Szekszárd                                         | 31,94                 | 432                   | 28    | 76    | 154,9   | 1052             | 950  | 90,3  | 12            | 1,26          | 0,80      |

Table 16.2.1-15: Air pollution determined by statistical indicators - 2011

#### Air pollution map



Jelmagyarázat – Legend, Összesített index - Aggregated Index, kiváló – excellent, jó – good, megfelelő – acceptable, szennyezett – polluted, erősen szennyezett – extremely polluted

Figure 16.2.1-7: Summarised air pollution map – 2011

# 16.2.1.2.6 Assessments based on annual average values between 2003-2011

The following table presents annual average figures of settling dust concentration in 2003-2011 within a 30 km zone:

| Settling dust | Paks | Dunaföldvár  | Kiskőrös | Limit      |
|---------------|------|--------------|----------|------------|
| 2003-2011     |      | g/m²x30 days |          | s          |
| 2003          | 5,35 | 6,39         | 5,61     | day<br>év  |
| 2004          | 4,88 | 5,56         | 8,30     | 30 c       |
| 2005          | 5,72 | 6,67         | 8,67     | t/kn x;    |
| 2006          | 5,70 | 5,40         | 6,07     | 9(m<br>20, |
| 2007          | 5,62 | 6,60         | 5,46     | 16<br>al 1 |
| 2008          | 5,09 | 6,23         | -        | ays        |
| 2009          | 6,59 | 5,78         | -        | Ar         |
| 2010          | 5,15 | 6,75         | -        | т<br>т     |
| 2011          | 3,37 | 5,08         | -        | -          |

Table 16.2.1-16: Settling dust annual average concentration – 2003 - 2011

Air pollution health limits were in effect until 2010 in conformity with Appendix 1 of Decree 14/2001. (V. 9.) KöM-EüM-FVM on air pollution limits, and emission limits from stationary air polluting point sources. The new Decree 4/2011. (I. 14.) VM on air load limits and emission limits from stationary air polluting point sources contains no limit for settling dust.



ÜP – Settling dust, Határérték – limit

Figure 16.2.1-8: Changes in settling dust data in the region between 2003-2011

The following table presents annual average figures of nitrogen dioxide concentration in 2003-2011 within a 30 km zone:

| NO <sub>2</sub> | Kalocsa | Szekszárd | Annual limit | Annual limit |  |  |  |  |
|-----------------|---------|-----------|--------------|--------------|--|--|--|--|
| 2003-2011       |         | µg/m³     |              |              |  |  |  |  |
| 2003            | 20,55   | 45,52     |              | 54           |  |  |  |  |
| 2004            | 14,89   | 38,04     |              | 52           |  |  |  |  |
| 2005            | 15,18   | 33,79     |              | 50           |  |  |  |  |
| 2006            | 17,87   | 40,60     |              | 48           |  |  |  |  |
| 2007            | 15,72   | 33,33     | 40           | 46           |  |  |  |  |
| 2008            | 12,51   | 37,82     |              | 44           |  |  |  |  |
| 2009            | 10,35   | 30,09     |              | 42           |  |  |  |  |
| 2010            | 11,12   | 28,25     |              | 40           |  |  |  |  |
| 2011            | 15,03   | 31,94     |              | -            |  |  |  |  |

Table 16.2.1-17: Nitrogen dioxide annual average concentration – 2003 - 2011



Határérték – limit

Figure 16.2.1-9: NO<sub>2</sub> in the region between 2003-2011

# 16.2.1.3 Studies prepared within the NAÜ program in 2010-2011 - AEKI [16-7]

AEKI held measurements in a NAÜ program in 2010-2011 during summer and the heating season with the purpose to analyse changes in air quality (heating-fossil components) in mid-year.

The following table presents the locations of measurements/tests and the measured components.

| AEKI 2010, 2011       |                                                              |          |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|--|--|
| Settlement            | Measurement components                                       | Location |  |  |  |  |  |  |  |  |  |  |  |
| Paks                  |                                                              |          |  |  |  |  |  |  |  |  |  |  |  |
| Dózsa György road 95. | PM <sub>10</sub> (TEOM) element composition (XRF)            | Traffic  |  |  |  |  |  |  |  |  |  |  |  |
| Gagarin street        |                                                              | Park     |  |  |  |  |  |  |  |  |  |  |  |
| Fadd                  | <b>DM</b> (with maximum to ) channels are sitis (VDE)        |          |  |  |  |  |  |  |  |  |  |  |  |
| Öreg street           | PM <sub>10</sub> (with gravimetry) element composition (XRF) | village  |  |  |  |  |  |  |  |  |  |  |  |

Table 16.2.1-18: Measurement characteristics of study prepared under the NAÜ program in 2010-2011

The following Google Earth figure presents the measuring points.



Figure 16.2.1-10: Measuring points under the NAÜ program in 2010-2011

|                      | <b>PM</b> <sub>10</sub> | BC<br>(soot) | S      | CI     | к     | Ca     | Ti   | Cr  | Mn      | Fe    | Co             | Ni  | Cu   | Zn   | As  | Se  | Br   | Rb  | Sr  | Pb   |
|----------------------|-------------------------|--------------|--------|--------|-------|--------|------|-----|---------|-------|----------------|-----|------|------|-----|-----|------|-----|-----|------|
|                      | ug/m <sup>3</sup>       |              |        |        |       |        |      |     |         | ng/   | m <sup>3</sup> |     |      |      |     |     |      |     |     |      |
| Paks 2010            |                         |              |        |        |       |        |      |     |         |       |                |     |      |      |     |     |      |     |     |      |
| Average              | 32,7                    | 1,7          | 472,0  | 486,8  | 260,0 | 495,4  | 33,1 | 2,5 | 11,8    | 261,5 | 2,8            | 2,0 | 4,6  | 20,1 | 1,3 | 0,6 | 2,6  | 0,7 | 2,0 | 10,1 |
| Max                  | 71,6                    | 3,4          | 1157,1 | 1023,4 | 458,8 | 1331,8 | 92,9 | 3,6 | 26,1    | 526,5 | 4,2            | 3,2 | 7,7  | 43,2 | 3,2 | 0,7 | 6,2  | 1,1 | 7,8 | 26,5 |
| Min                  | 14,1                    | 0,3          | 152,7  | 93,2   | 110,6 | 87,0   | 3,3  | 1,6 | 4,1     | 67,3  | 0,8            | 0,9 | 1,9  | 3,5  | 0,6 | 0,4 | 1,3  | 0,3 | 0,4 | 2,1  |
| 98%                  | 59,8                    | 3,4          | 1031,5 | 1010,5 | 457,1 | 1193,2 | 84,8 | 3,6 | 22,6    | 507,0 | 4,1            | 3,2 | 7,5  | 41,4 | 2,7 | 0,7 | 5,2  | 1,1 | 6,6 | 26,5 |
| Nr. of<br>daily test | 29                      | 27           | 28     | 8      | 29    | 29     | 22   | 14  | 22      | 29    | 20             | 5   | 20   | 29   | 13  | 18  | 29   | 19  | 25  | 28   |
|                      |                         |              |        |        |       |        |      | Pal | ks 2011 |       |                |     |      |      |     |     |      |     |     |      |
| Average              | 28,6                    | 1,1          | 747,0  | 202,5  | 305,7 | 370,9  | 16,3 | 2,1 | 8,8     | 262,6 | 2,7            | 1,1 | 4,3  | 28,8 | 2,0 | 0,8 | 4,5  | 0,9 | 1,3 | 13,0 |
| Max                  | 51,0                    | 1,9          | 2018,7 | 303,2  | 674,6 | 841,1  | 40,8 | 4,6 | 17,4    | 535,7 | 5,8            | 1,8 | 10,5 | 94,1 | 6,0 | 1,9 | 11,6 | 1,9 | 2,5 | 41,6 |
| Min                  | 12,7                    | 0,8          | 152,5  | 44,8   | 90,3  | 104,7  | 3,7  | 1,0 | 3,5     | 98,2  | 1,1            | 0,8 | 1,4  | 4,8  | 0,5 | 0,3 | 0,9  | 0,4 | 0,4 | 1,3  |
| 98 %rc.              | 50,2                    | 1,8          | 2018,7 | 303,2  | 674,6 | 785,6  | 33,1 | 4,0 | 16,2    | 465,7 | 5,2            | 1,7 | 9,2  | 90,7 | 5,8 | 1,9 | 11,2 | 1,9 | 2,2 | 36,1 |
| Nr. of<br>daily test | 33                      | 15           | 31     | 15     | 33    | 33     | 30   | 19  | 33      | 33    | 27             | 7   | 32   | 33   | 20  | 32  | 33   | 22  | 29  | 33   |

Table 16.2.1-19 presents the detailed results of  $PM_{10}$ , soot and composition values measured **at Paks**, and Figure 16.2.1-11 presents the  $PM_{10}$  run-off curves:

Table 16.2.1-19: Measurement results of study prepared under the NAÜ program in 2010-2011 at Paks





Figure 16.2.1-11: Run-off curves of values measured under the NAÜ program in 2010-2011 at Paks

Table 16.2.1-20 presents detailed results of  $M_{10}$ , soot measured at **Fadd** and their composition, and Figure 16.2.1-12 presents the PM<sub>10</sub> run-off curves:

|                           | <b>PM</b> <sub>10</sub> | BC<br>(soot) | S      | CI    | к     | Ca     | Ti    | Cr  | Mn     | Fe     | Co             | Ni  | Cu  | Zn   | As  | Se  | Br   | Rb  | Sr  | Pb   |
|---------------------------|-------------------------|--------------|--------|-------|-------|--------|-------|-----|--------|--------|----------------|-----|-----|------|-----|-----|------|-----|-----|------|
|                           | ug/m <sup>3</sup>       |              |        |       |       |        |       |     |        | ng/n   | 1 <sup>3</sup> |     |     |      |     |     |      |     |     |      |
|                           |                         |              | •      |       |       |        |       | Fad | d 2010 |        |                |     |     |      |     |     |      |     |     |      |
| Average                   | 29,6                    |              | 569,4  | 181,0 | 284,3 | 343,5  | 51,7  | 4,0 | 14,0   | 186,4  | 2,3            | 2,0 | 2,7 | 18,1 | 1,2 | 0,6 | 2,7  | 0,6 | 1,7 | 10,4 |
| Max                       | 59,0                    |              | 1613,3 | 588,5 | 751,4 | 709,0  | 190,2 | 8,6 | 37,0   | 452,3  | 4,7            | 2,1 | 5,1 | 41,5 | 2,5 | 0,8 | 6,9  | 1,2 | 5,2 | 38,1 |
| Min                       | 14,1                    | no           | 134,6  | 21,2  | 104,8 | 47,5   | 3,9   | 1,6 | 3,4    | 31,0   | 1,1            | 2,0 | 1,2 | 4,1  | 0,5 | 0,4 | 1,3  | 0,4 | 0,5 | 2,2  |
| 98 %.                     | 54,5                    | data         | 1522,8 | 568,7 | 606,5 | 667,4  | 171,7 | 8,2 | 35,1   | 395,2  | 4,6            | 2,1 | 4,8 | 39,0 | 2,4 | 0,8 | 6,3  | 1,1 | 5,1 | 33,8 |
| nr. of<br>daily<br>tests  | 30                      |              | 27     | 11    | 30    | 30     | 29    | 11  | 29     | 30     | 16             | 2   | 25  | 30   | 5   | 15  | 30   | 15  | 19  | 30   |
|                           |                         |              |        |       |       |        |       | Fad | d 2011 |        |                |     |     |      |     |     |      |     |     |      |
| Average                   | 27,1                    |              | 774,2  | 122,0 | 325,3 | 541,7  | 22,1  | 3,2 | 9,8    | 299,0  | 3,2            | 1,4 | 3,3 | 24,6 | 2,5 | 0,8 | 4,2  | 1,0 | 1,7 | 12,2 |
| Max                       | 51,1                    |              | 2433,6 | 256,7 | 655,6 | 2699,8 | 85,6  | 6,7 | 30,0   | 1012,4 | 10,1           | 2,0 | 7,9 | 83,5 | 6,4 | 1,7 | 10,2 | 2,4 | 6,2 | 35,4 |
| Min                       | 12,1                    | no<br>data   | 151,1  | 39,0  | 103,7 | 52,8   | 4,0   | 1,8 | 2,3    | 81,5   | 1,2            | 1,1 | 1,1 | 3,4  | 0,7 | 0,3 | 1,1  | 0,4 | 0,4 | 1,4  |
| 98 %.                     | 48,9                    | uala         | 1905,4 | 236,2 | 653,6 | 1834,2 | 69,7  | 6,0 | 23,0   | 735,1  | 8,0            | 1,9 | 7,2 | 81,0 | 5,8 | 1,5 | 10,1 | 2,2 | 4,5 | 34,8 |
| nr. of.<br>daily<br>tests | 27                      |              | 31     | 15    | 33    | 33     | 30    | 19  | 33     | 33     | 27             | 7   | 32  | 33   | 20  | 32  | 33   | 22  | 29  | 33   |

Table 16.2.1-20: Measurement results of study ppprepared under the NAÜ program in 2010-2011 at Fadd



Határérték=limit

Figure 16.2.1-12: Run-off curves of PM10 values measured under the NAÜ program in 2010-2011 at Fadd

# 16.2.1.1 Preliminary consultation documentation (PCD) – 2011 [16-8]

In the PCD the following points contain the information relevant to air quality.

- 3.: Current status of the environment in the vicinity of the site
  - 3.3.1. Air quality

The air quality was described by legal category and existing data, no measurements/tests were specifically performed for preparing the PCD.

When the status was described, results of measurements/tests of settling dust (PM) as part of the National Air Pollution Measuring Network at Paks were used. Baseline pollution of nitrogen oxides (NO,  $NO_2$ ,  $NO_x$ ), particulate matter ( $PM_{10}$ ) and carbon monoxide (CO) could only be estimated as there were no measurements/tests held. For these estimates data of emission from residential areas, services, industry and traffic was used.

- 4. Presentation of environmental impacts of the implementation and construction of the planned new units in every option or version
  - 4.2.1 Impacts of construction upon the air quality

The document states that the conventional load onto the air from the planned nuclear plant units during construction, abandonment and de-commissioning will most probably be significantly higher (with orders of magnitude) than during operations. Emission into the ambient air during construction from heavy-duty machines (dust, exhaust gases), and from technology operations (gases, steam and vapours), during earth moving, landscaping, terrain arrangement and foundation works will emerge from dust and particles from the soil and dusting materials, as well as from transportation (material and passenger). Describing each type of emissions in details – *without propagation calculations* – we can state that "construction of new units will cause significant air pollution for several years. Air quality will deteriorate not only at the workplaces but also in their environment and along the roads affected by transportation. However, under ordinary circumstances the total load arising from construction works will be qualified for the residential areas as *tolerable-neutral*."

- 5. Environmental impacts from operation of the planned new units onto the relevant options
  - 5.2.2. Impacts onto air quality

Here we can mainly also find the list of emission parameters.

- 6. Description of aggregated environmental impacts from nuclear facilities operating simultaneously at Paks site 6.2.1. Impacts onto air quality
- 7. Consequences of operational disturbances and accidents onto the options assumed for the new units 7.5.1. Operational disturbances and accidents causing air quality deterioration
- 8. Environmental impacts from or related to abandonment onto the options assumed for the new units
- 9. Delineation of impact zones for the options assumed for the new units 9.2.1. Impacts onto the air quality form the impact zone
- 11. Issues defined in the Environmental Impact Study and/or that require studies in more details Air quality survey

Authors of PCD also propose to perform air pollution tests within the expected impact zone in the planned new units.

# 16.2.2 AIR POLLUTION BASELINE SURVEY – 2012-2013

The purpose of the survey was to define the baseline air pollution level required for analysing the environmental protection impacts of the new nuclear plant units with on-the-spot measurements/tests, because on-the-spot measurement results for determining the details of the ambient air pollution levels are not available for the site and residential areas located in the vicinity of the site.

The National Environmental Health Institute, Environmental Health Department, Air Hygiene Section (OKI) performed the on-the-spot measurements/tests.

The air pollution baseline was determined on the basis of measurements/tests performed during eight weeks on six points, evenly distributed during 2012.

# 16.2.2.1 Scope of the survey

The scope of the air pollution baseline survey will cover the following issues:

- Continuous test of concentration of nitrogen dioxide (NO<sub>2</sub>), nitrogen oxides (NO<sub>X</sub>), sulphur-dioxide (SO<sub>2</sub>) and carbon monoxide (CO) integrated for one hour average time using an analyser installed into a mobile measuring station, through 4 x 14 days in every measuring point.
- Pollution test of fraction of total particulate matter (TSPM) smaller than 10 μm (PM<sub>10</sub>), through 4 x 14 days in every measuring point with 24-hour exposition time, using phased active test technique.
- Continuous test of concentration of ozone (O<sub>3</sub>) integrated for one hour average time using an analyser installed into a mobile measuring station, through 4x14 days in Paks city at the measuring point located in the vicinity of Kölesdi road.
- Pollution test of settling dust through 12 x 30 days using passive test technique at every measuring point.
- Continuous registry of meteorological characteristics (temperature, humidity, wind speed/direction) integrated for 1 hour using instruments installed into mobile measuring stations, parallel with the air pollution tests.

# 16.2.2.2 Review of requirements for methodology

There are requirements for ambient air pollution test and assessment defined in various laws and standards. OKI measured the ambient air pollution in accordance with its accreditation and the following standards:

MSZ ISO 7996:1993: Ambient air. Definition of nitrogen oxides mass concentration. chem-iluminescence method

MSZ-ISO 2145637/1993: Gas pollution survey of air. Definition of A sulphuric oxide content with UV-fluorescence method

MSZ-ISO 4224:2003: Ambient air. Definition of carbon monoxide. Non-dispersive, IR method

MSZ-EN 12341:2000: Air quality. Definition of PM<sub>10</sub> fraction of particulate matter dust. Reference method and on-the-spot analysis for defining equivalence of the measurement methods and the reference measurement methods.

VDI 2463 Blatt 10:1996: Definition of total particulate matter with gravimetry

MSZ 21456—26:1994: Gas pollution survey of air. Definition of ozone with UV-photometric method

MSZ 21454-1:1983: Solids pollution survey of air. Definition of settling dust mass

During measurements the SCANAIR 2000 data collection and transmission software was applied.

Parallel with the air pollution test, meteorological characteristics (temperature, humidity, wind speed, wind direction) were also registered using instruments installed into the mobile measuring station.

Prior to the surveys sampling plans, site plans and during measurements sampling protocols were prepared. The measurement results were recorded in measurement protocols.

The National Environmental Health Institute Environmental Health Department Testing Laboratory has an accreditation issued by the National Accreditation Board for such tests and surveys, its registration number: **NAT-1-1070/2010**. The accreditation document will be valid until August 14, 2014.

# 16.2.2.3 Methodology applied for the measurements/tests

# 16.2.2.3.1 Continuous measurements/tests

• Nitrogen oxides (MSZ ISO 7996:1993)

 $NO_2$ ,  $NO_x$  are measured with a two-channel analyzer. The analyzer directly measures nitrogen monoxide content in ambient air. Results of  $NO_2$  measurements will go through the converter and thus it will reduce the  $NO_2$  to NO, and will be fed into the reaction chamber. The received electric signal is proportionate with the total quantity of nitrogen oxides. The difference between the two values defines the nitrogen dioxide quantity. The instrument calculates the average of the continuously measured concentration values in every 60 minutes. /Analyzer type a: AC 31 M (Environment SA)/ • Sulphur-dioxide (MSZ-ISO 2145637/1993, E-06)

When using the UV fluorescent measurement method, the sulphur-dioxide molecules will be transformed into induced status due to UV light, and then the higher energy level of the molecules will be terminated with UV-photon emission. Converting the emitted fluorescent light onto electric signal, it will be proportionate with the sulphur-dioxide content of the air sample. The instrument calculates the average of the continuously measured concentration values in every 60 minutes. /Analyzer type a: AF-21M (Environment SA)/

• Carbon-monoxide (MSZ-ISO 4224:2003)

The basis of this measurement method is that the carbon-monoxide molecules have selective light absorption capacity in the infrared band. Based on the level of light absorption (which is proportionate with the number of the carbon monoxide molecules in the air sample) we can determine the unknown concentration. The instrument calculates the average of the continuously measured concentration values in every 60 minutes. /Analyzer type a: CO 11 M (Environment SA)/.

• Ozone (MSZ 21456—26:1994)

The basis of the determination method is that ozone molecules in UV band (253,7 nm) maximum absorption capacity, thus we can determine the ozone concentration from the level of absorption (which is proportionate with the number of the ozone molecules in the air sample). The instrument calculates the average of the continuously measured concentration values in every 60 minutes. /Analyzer type a: O3 41M (Environment SA)/

# 16.2.2.3.2 Phased, active surveys

• *Particulate matter (PM<sub>10</sub>) (MSZ-EN 12341:2000)* 

During the sampling process the air sample will be pumped at 2,3 m<sup>3</sup>/hour volumetric flowrate, and through 24 hours in the sampler instrument equipped with a pre-separator that can separate particles with larger than 10  $\mu$ m diameter. Particles (dust fraction) below the given grain size will be collected on the surface of the quartz filter with 47-50 mm diameter installed after the impactor. The stabile speed of the flowing air sample is secured throughout the total sampling process.

After the sampling, we will apply gravimetry as the relevant analytical method. We measure the mass of the filters before and after the sampling, following conditioning performed in a location with acceptable temperature and relative humidity. We calculate the mass concentration of the dust fraction from the separated dust quantity based on the volume of the air sample and the relevant ambient parameters. The sampler type: Sequential Sampler, SEQ 47/50 (Sven Leckel Ingenierbüro GmbH).

• Total particulate matter (TSPM) (VDI 2463 Blatt 10:1996)

As part of the total particulate matter analysis, we perform the sampling with a sequential dust sampler instrument of the same type as for sampling the particulate matter fraction smaller than 10  $\mu$ m with the difference that that now we use a TSPM sampler head and 3m<sup>3</sup>/h speed of flow.

The analytical method (gravimetry) after the sampling and the mass concentration calculation will be identical with the process applied for testing the PM<sub>10</sub> fraction.

# 16.2.2.3.3 Phased, passive survey

• Definition of surface load of settling dust (MSZ 21454-1:1983)

During the sampling process we put the collection vessel onto the holder easel with 1.2-1.5 m height, free of shadow from trees and buildings, and pour dust absorption liquid (ultra purity water). Dust will be settled into the collection vessel throughout 30 days in a natural manner and after the end of the exposition period the vessel will be sent to a laboratory for procession. We determine the collected dust quantity with mass measurement. As we know the surface of the collection vessel we will determine the settling dust surface load in  $g/m^2 * 30$  days (as the unit of measurement).

# 16.2.2.3.4 Measurement of meteorological parameters

Parallel with the measurement of air pollution parameters we also perform measurements for meteorological characteristics, temperature, humidity, wind speed, wind direction. The measuring truck will have the following meteorological sensors and instruments:

Wind direction and wind speed measurement (at 5 metres height): Obsermet OMC-160 Temperature humidity measurement: Obsermet OMC-402 Solar radiation measurement: Obsermet OMC-604 Barometric pressure measurement: Obsermet OMC-506.

# 16.2.2.4 Methodology applied for the assessment

Assessment of air pollution was performed by ERBE in accordance with the following decrees or regulations:

Government Decree 306/2010. (XII. 23.) on air protection measurement

Decree 4/2002. (X.7.) KvVM on designation of air pollution agglomerations and zones

Decree 4/2011. (I.14.) VM on air load limits and emission limits for stationary air polluting point sources

Decree 6/2011. (I. 14) VM on rules for analysis, control and assessment of air load levels and emission of stationary air polluting sources.

During this work we used the measurement results of the National Air Pollution Measuring Network (http://www.kvvm.hu/olm), as data source.

We structured the NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, CO, PM<sub>10</sub> values measured by OKI into a database, determined the number of measurements/tests suitable for assessment, number of cases when the hourly limit were exceeded, and calculated the average, minimum - maximum values, the 98% percentile value, daily average, and heating (FF) and non-heating semiannual (NF) average values. Explanation of main indicators determined during data procession:

| Value exceeding limit | number of event when the hourly air quality limits were exceeded           |
|-----------------------|----------------------------------------------------------------------------|
| average               | arithmetic average of hourly values measured in the given period           |
| minimum               | hourly, daily minimum value measured in the given period                   |
| maximum               | hourly, daily maximum value measured in the given period                   |
| 98% percentile        | value measured with 98% frequency of the hourly values in the given period |
| daily average         | arithmetic average of the total hourly values measured on the given days   |
| heating season (FF)   | winter period between October 1. and March 31.                             |
| non-heating season (N | IF) summer period between April 1. and March 31.                           |

When the measurement results were assessed, the measured 1hour and 24-hour average concentration values were analysed comparing them to health limits defined in Decree 4/2011. (I.14.) VM. In case the Decree did not define any limit for a given measured component, then we applied the limits defined in the formerly valid Decree 14/2001.(V.9.) KöM-EüM-FVM.

# 16.2.2.5 On-the-spot air pollution measurements

The following measurement points were defined for measuring the baseline air pollution:

- 1 point on the Plant site (1. LMp area selected for Plant development)
- 1 point next to the northern access road (2. LMp next to the northern access road)
- 1 point next to the southern access road (3. LMp- next to the southern access road, Meteorological Station)
- 1 point in Paks-Csámpa settlement, residential buildings along highway nr. 6 (4. LMp Csámpa, Kis street)
- 1 point at the left bank of the River Danube (5. LMp Dunaszentbenedek, 2/3 Dam keeper house)
- 1 point in Paks city, next to Kölesdi road (6. LMp Paks, OVIT site, Dankó Pista street 1.)

The primary criterion for selecting the measurement points was to ensure that the measurement points are located as close as possible to the sites defined in the technical appendix of the contract, and the secondary criterion was the availability of power supply and security of the equipments and instruments used for the measurements/tests.

# Location of measuring points

| BULMB    |     |
|----------|-----|
| F 0      | LMP |
| 21LMp    | NEE |
| Paulap S |     |
| 4.LMp    |     |

Figure 16.2.2-2 presents the locations of the selected measuring points.

Figure 16.2.2-1: Location of air pollution measuring points

We recorded the coordinates of measurement point in order that the measurement point can be later identified.

| Measuring<br>point code | Location of measuring point                      | WGS coo       | EOV coordinates |         |         |  |  |
|-------------------------|--------------------------------------------------|---------------|-----------------|---------|---------|--|--|
| 1. LMp                  | Paks, Nuclear plant; Mobilisation Area           | N46°35'11.22" | E18°51'42.66"   | 635 775 | 138 024 |  |  |
| 2. LMp                  | Paks, north access road, plant north access road | N46°34'57.90" | E18°50'48.16"   | 634 613 | 137 616 |  |  |
| 3. LMp                  | Paks, south access road, Meteorological Station  | N46°34'25.32" | E18°50'43.80"   | 634 518 | 136 610 |  |  |
| 4. LMp                  | Csámpa, Kis street                               | N46°33'55.66" | E18°49'40.84"   | 633 175 | 135 698 |  |  |
| 5. LMp                  | Dunaszentbenedek, Dam keeper house               | N46°35'25.59" | E18°52'56.82"   | 637 353 | 138 464 |  |  |
| 6. LMp                  | Paks, OVIT site, Dankó Pista street 1.           | N46°36'19.26" | E18°50'36.38"   | 634 369 | 140 129 |  |  |

Table 16.2.2-1: Measurement points coordinates

Draft of on-the-spot measurements schedule:

|      | Мо | Tu | We | Th | Fr | Sa | Su |      | Мо | Tu       | We         | Th       | Fr       | Sa | Su |       | Мо     | Tu    | We      | Th     | Fr | Sa | Su |
|------|----|----|----|----|----|----|----|------|----|----------|------------|----------|----------|----|----|-------|--------|-------|---------|--------|----|----|----|
|      |    |    |    |    |    |    | 1  |      | Т  | ruck teo | chnical ir | nspectio | n (2-6.) |    | 1  |       | 31     | 1     | 2       | 3      | 4  | 5  | 6  |
| ≥    | 2  | 3  | 4  | 5  | 6  | 7  | 8  |      | 2  | 3        | 4          | 5        | 6        | 7  | 8  | ≥     | 7*     | 8     | 9       | 10     | 11 | 12 | 13 |
| nua  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | ≥    | 9  | 10       | 11         | 12       | 13       | 14 | 15 | nua   | 14     | 15    | 16      | 17     | 18 | 19 | 20 |
| Ja   | 16 | 17 | 18 | 19 | 20 | 21 | 22 | ſ    | 16 | 17       | 18         | 19       | 20       | 21 | 22 | Ja    | 21     | 22    | 23      | 24     | 25 | 26 | 27 |
|      | 23 | 24 | 25 | 26 | 27 | 28 | 29 |      | 23 | 24       | 25         | 26       | 27       | 28 | 29 |       | 28     | 29    | 30      | 31     | 1  | 2  | 3  |
|      | 30 | 31 | 1  | 2  | 3  | 4  | 5  |      | 30 | 31       | 1          | 2        | 3        | 4  | 5  | y     | 4      | 5     | 6       | 7      | 8  | 9  | 10 |
| ary  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |      | 6  | 7        | 8          | 9        | 10       | 11 | 12 | uar   | 11     | 12    | 13      | 14     | 15 | 16 | 17 |
| bru  | 13 | 14 | 15 | 16 | 17 | 18 | 19 | usta | 13 | 14       | 15         | 16       | 17       | 18 | 19 | -ebr  | 18     | 19    | 20      | 21     | 22 | 23 | 24 |
| Fe   | 20 | 21 | 22 | 23 | 24 | 25 | 26 | Aug  | 20 | 21       | 22         | 23       | 24       | 25 | 26 | 4     | 25     | 26    | 27      | 28     | 1  | 2  | 3  |
|      | 27 | 28 | 29 | 1  | 2  | 3  | 4  |      | 27 | 28       | 29         | 30       | 31       | 1  | 2  |       | 4      | 5     | 6       | 7      | 8  | 9  | 10 |
|      | 5  | 6  | 7  | 8  | 9  | 10 | 11 | ē    | 3  | 4        | 5          | 6        | 7        | 8  | 9  | Irch  | 11     | 12    | 13      | 14     | 15 | 16 | 17 |
| Irch | 12 | 13 | 14 | 15 | 16 | 17 | 18 | dme  | 10 | 11       | 12         | 13       | 14       | 15 | 16 | Ma    | 18     | 19    | 20      | 21     | 22 | 23 | 24 |
| Ma   | 19 | 20 | 21 | 22 | 23 | 24 | 25 | epte | 17 | 18       | 19         | 20       | 21       | 22 | 23 | _     | 25     | 26    | 27      | 28     | 29 | 30 | 31 |
|      | 26 | 27 | 28 | 29 | 30 | 31 | 1  | S    | 24 | 25       | 26         | 27       | 28       | 29 | 30 |       | 1      | 2     | 3       | 4      | 5  | 6  | 7  |
|      | 2  | 3  | 4  | 5  | 6  | 7  | 8  |      | 1  | 2        | 3          | 4        | 5        | 6  | 7  | April | 8      | 9     | 10      | 11     | 12 | 13 | 14 |
| pril | 9  | 10 | 11 | 12 | 13 | 14 | 15 | obe  | 8  | 9        | 10         | 11       | 12       | 13 | 14 |       | 15     | 16    | 17      | 18     | 19 | 20 | 21 |
| A    | 16 | 17 | 18 | 19 | 20 | 21 | 22 | Oct  | 15 | 16       | 17         | 18       | 19       | 20 | 21 |       | 22     | 23    | 24      | 25     | 26 | 27 | 28 |
|      | 23 | 24 | 25 | 26 | 27 | 28 | 29 |      | 22 | 23       | 24         | 25       | 26       | 27 | 28 |       | 29     | 30    |         |        |    |    |    |
|      | 30 | 1  | 2  | 3  | 4  | 5  | 6  |      | 29 | 30       | 31         | 1        | 2        | 3  | 4  |       | *INSTF | RUMEN | T CALIB | RATION | 1  |    |    |
| ~    | 7  | 8  | 9  | 10 | 11 | 12 | 13 | her  | 5  | 6        | 7          | 8        | 9        | 10 | 11 |       |        |       |         |        |    |    |    |
| May  | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ver  | 12 | 13       | 14         | 15       | 16       | 17 | 18 |       |        | SHIFT | days    |        |    |    |    |
|      | 21 | 22 | 23 | 24 | 25 | 26 | 27 | Ň    | 19 | 20       | 21         | 22       | 23       | 24 | 25 |       |        | NEW C | YCLE    |        |    |    |    |
|      | 28 | 29 | 30 | 31 | 1  | 2  | 3  |      | 26 | 27       | 28         | 29       | 30       | 1  | 2  |       |        |       |         |        |    |    |    |
|      | 4  | 5  | 6  | 7  | 8  | 9  | 10 | ē    | 3  | 4        | 5          | 6        | 7        | 8  | 9  |       |        |       |         |        |    |    |    |
| ane  | 11 | 12 | 13 | 14 | 15 | 16 | 17 | dme  | 10 | 11       | 12         | 13       | 14       | 15 | 16 |       |        |       |         |        |    |    |    |
| ٦٢   | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Jece | 17 | 18       | 19         | 20       | 21       | 22 | 23 |       |        |       |         |        |    |    |    |
|      | 25 | 26 | 27 | 28 | 29 | 30 |    |      | 24 | 25       | 26         | 27       | 28       | 29 | 30 |       |        |       |         |        |    |    |    |

Table 16.2.2-2: Schedule of the planned on-the-spot measurements
# 16.2.2.5.1 Paks, Nuclear plant; Mobilisation Area - 1. LMp



mérés - measurement/test source : Google Earth Figure 16.2.2-2: 1. LMp location



1. TEST



2. TEST







4. TEST

SETTLING DUST SAMPLING UNITS

Figure 16.2.2-3: Location of testing truck and settling dust sampling unit location at 1. LMp point

## NO₂ immission

|                     | NO <sub>2</sub> concentration<br>Based on daily assessment based on hourly concentration values |         |                   |                   |                     |              |         |            |                   |                     |              |           |       |                   |                  |              |         |       |                |
|---------------------|-------------------------------------------------------------------------------------------------|---------|-------------------|-------------------|---------------------|--------------|---------|------------|-------------------|---------------------|--------------|-----------|-------|-------------------|------------------|--------------|---------|-------|----------------|
|                     |                                                                                                 |         |                   |                   |                     |              | Based   | on daily a | ssessment bas     | sed on hourly co    | oncentratio  | on values |       |                   |                  |              |         |       |                |
|                     | 1                                                                                               | I. TEST |                   |                   |                     |              | 2. Test |            |                   |                     |              | 3. Test   |       |                   |                  |              | 4. TEST | Г     |                |
| Measuring<br>period | Aver-<br>age                                                                                    | Min     | Max               | 98%<br>percentile | Measuring<br>period | Aver<br>-age | Min     | Max        | 98%<br>percentile | Measuring<br>period | Aver-<br>age | Min       | Max   | 98%<br>percentile | Measuring period | Aver<br>-age | Min     | Max   | 98% percentile |
| las 04              | 00                                                                                              | ۲<br>۲  | ig/m <sup>3</sup> | 20                | A                   | 50           |         | ug/m³      | 70                | A                   | 00           | 45        | ug/m³ | <u> </u>          | Nev 40           | 40           | 00      | µg/m³ | <u> </u>       |
| Jan.24              | 20                                                                                              | 12      | 40                | 38                | Apr.21              | 58           | 42      | 73         | 73                | Aug.01              | 26           | 15        | 61    | 60                | NOV.13           | 48           | 23      | 73    | 60             |
| Jan.25              | 20                                                                                              | 16      | 26                | 25                | Apr.22              | 50           | 29      | 63         | 63                | Aug.02              | 19           | 13        | 33    | 30                | Nov.14           | 34           | 18      | 74    | 71             |
| Jan.26              | 21                                                                                              | 16      | 39                | 34                | Apr.23              | 50           | 41      | 62         | 61                | Aug.03              | 23           | 15        | 34    | 33                | Nov.15           | 27           | 21      | 46    | 41             |
| Jan.27              | 31                                                                                              | 19      | 61                | 60                | Apr.24 43 31 59 59  |              |         |            |                   | Aug.04              | 20           | 13        | 42    | 37                | Nov.16           | 30           | 24      | 42    | 41             |
| Jan.28              | 22                                                                                              | 13      | 32                | 32                | Apr.25              | 54           | 29      | 77         | 76                | Aug.05              | 21           | 11        | 36    | 34                | Nov.17           | 29           | 26      | 33    | 33             |
| Jan.29              | 14                                                                                              | 11      | 24                | 22                | Apr.26              | 29           | 10      | 51         | 50                | Aug.06              | 19           | 12        | 30    | 28                | Nov.18           | 26           | 22      | 35    | 34             |
| Jan.30              | 19                                                                                              | 13      | 33                | 32                | Apr.27              | 22           | 11      | 69         | 55                | Aug.07              | 12           | 5         | 17    | 17                | Nov.19           | 32           | 21      | 53    | 52             |
| Jan.31              | 15                                                                                              | 11      | 22                | 21                | Apr.28              | 26           | 12      | 97         | 90                | Aug.08              | 17           | 12        | 27    | 26                | Nov.20           | 31           | 27      | 36    | 35             |
| Febr.01             | 15                                                                                              | 11      | 21                | 20                | Apr.29              | 18           | 11      | 38         | 36                | Aug.09              | 16           | 10        | 26    | 25                | Nov.21           | 31           | 26      | 36    | 36             |
| Febr.02             | 11                                                                                              | 8       | 15                | 14                | Apr.30              | 18           | 11      | 43         | 41                | Aug.10              | 16           | 9         | 28    | 27                | Nov.22           | 32           | 25      | 44    | 43             |
| Febr.03             | 8                                                                                               | 7       | 11                | 11                | May 01              | 23           | 10      | 48         | 42                | Aug.11              | 15           | 8         | 25    | 25                | Nov.23           | 36           | 30      | 50    | 48             |
| Febr.04             | 13                                                                                              | 7       | 18                | 18                | May 02              | 20           | 10      | 36         | 34                | Aug.12              | 14           | 12        | 21    | 18                | Nov.24           | 40           | 33      | 48    | 47             |
| Febr.05             | 19                                                                                              | 15      | 30                | 29                | May 03              | 13           | 9       | 23         | 22                | Aug.13              | 17           | 12        | 29    | 27                | Nov.25           | 31           | 26      | 38    | 38             |
| Febr.06             | 26                                                                                              | 22      | 34                | 33                | May 04              | 12           | 9       | 23         | 22                | Aug.14              | 14           | 9         | 20    | 20                | Nov.26           | 33           | 27      | 49    | 44             |
| Avrg                | 18                                                                                              | 13      | 29                | 28                |                     | 31           | 19      | 54         | 52                |                     | 18           | 11        | 31    | 29                |                  | 33           | 25      | 47    | 45             |

Comment:

The measurement was suspended on January 31 between 12.00 – 13.00 hours due to calibration. The measurement was suspended on April 26 between 11.00 – 12.00 hours due to calibration. The measurement was suspended on August 7 between 10.00 – 11.00 hours due to calibration. The measurement was suspended on November 19 between 11.00-12.00 hours due to calibration.

Table 16.2.2-3: 1. LMp on-the-spot measurements/tests – NO2

The following figures present the hourly NO<sub>2</sub> concentration values.



koncentráció - concentration, erőmű területe - power plant area, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-4: 1. LMp - NO<sub>2</sub> hourly run-off curves

| NO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------|----|----|----|--|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                                 |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |  |
| <b>1. Test</b> (2012. 01. 24-02.06.)                                           | <b>1. TEST</b> (2012. 01. 24-02.06.) 18 13 29 28 |    |    |    |  |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 04. 21-05.04.)                                           | 31                                               | 19 | 54 | 52 |  |  |  |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012. 08. 01-14.) 18 11 31 29                                  |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012. 11. 13-26.) 33 25 47 45                                  |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |  |

Table 16.2.2-4: 1. LMp NO<sub>2</sub> measurements/tests results – measurement by periods



koncentráció - concentration, erőmű területe - power plant area, 24 órás határérték - 24-hour limit, mérés - measurement/test Figure 16.2.2-5: 1. LMp - NO<sub>2</sub> daily average concentration values

 $NO_2$  hourly values measured during the 4-times 2-week measurement periods at 1. LMp point did not exceed the 100  $\mu$ g/m<sup>3</sup> hourly limit.

Neither exceeded the 24-hour average concentrations the 85 µg/m<sup>3</sup> daily limit.

The highest hourly NO<sub>2</sub> value measured during the 2<sup>nd</sup> measuring period, on April 28, 2012. was 97 µg/m<sup>3</sup>.

The 2-week average values measured during the four measuring period of NO<sub>2</sub> measurements/tests were 18 µg/m<sup>3</sup>, 31 µg/m<sup>3</sup>, 18 µg/m<sup>3</sup>, 33 µg/m<sup>3</sup>.

NO<sub>2</sub> measurement results showed the volatility not in line with the heating-non-heating seasons, and values measured in April were higher than values measured during the January and November heating seasons.

#### NO<sub>x</sub> immission

|           |              |                                             |       |                   |           |              |         |            | NO <sub>x</sub> con | centratio         | า            |        |        |                |           |              |         |       |                   |
|-----------|--------------|---------------------------------------------|-------|-------------------|-----------|--------------|---------|------------|---------------------|-------------------|--------------|--------|--------|----------------|-----------|--------------|---------|-------|-------------------|
|           |              |                                             |       |                   |           |              |         | Based on o | aily assessmer      | t hourly concentr | ation values |        |        |                |           |              |         |       |                   |
|           |              | 1. TEST                                     |       |                   |           | :            | 2. Test |            |                     |                   | 3            | . Test |        |                |           | 4            | 4. Test |       |                   |
| Measuring | Aver-<br>age | Min                                         | Max   | 98%<br>percentile | Measuring | Aver-<br>age | Min     | Max        | 98%<br>percentile   | Measuring         | Average      | Min    | Max    | 98% percentile | Measuring | Aver-<br>age | Min     | Max   | 98%<br>percentile |
| pendu     |              |                                             | ug/m³ |                   | penda     |              |         | µg/m³      |                     | penod             |              |        | µg/m³  | T              | period    |              |         | µg/m³ |                   |
| Jan.24    | 23,1         | 13,2                                        | 42,2  | 41,2              | Apr.21    | 67,9         | 46,5    | 91,6       | 90,3                | Aug.01            | 29,2         | 16,2   | 64,5   | 63,8           | Nov.13    | 71,7         | 29,9    | 114,0 | 103,3             |
| Jan.25    | 23,3         | 19,7                                        | 29,3  | 28,6              | Apr.22    | 57,6         | 32,0    | 78,2       | 78,1                | Aug.02            | 21,7         | 14,2   | 41,8   | 36,8           | Nov.14    | 45,1         | 23,4    | 113,6 | 108,1             |
| Jan.26    | 24,4         | 19,0                                        | 40,5  | 36,3              | Apr.23    | 57,7         | 46,6    | 74,3       | 72,8                | Aug.03            | 27,4         | 15,4   | 45,3   | 45,3           | Nov.15    | 38,1         | 28,5    | 69,1  | 60,6              |
| Jan.27    | 33,9         | 33,9 20,8 64,0 62,8 Apr.24 49,5 34,3 69,8 6 |       |                   |           |              | 68,4    | Aug.04     | 22,0                | 13,7              | 47,3         | 40,2   | Nov.16 | 41,1           | 30,7      | 61,9         | 58,8    |       |                   |
| Jan.28    | 26,0         | 16,3                                        | 36,5  | 36,1              | Apr.25    | 62,9         | 32,8    | 97,2       | 92,8                | Aug.05            | 23,9         | 11,5   | 37,6   | 36,9           | Nov.17    | 38,2         | 32,1    | 47,3  | 47,1              |
| Jan.29    | 19,9         | 15,7                                        | 29,0  | 27,4              | Apr.26    | 33,4         | 12,1    | 58,7       | 57,5                | Aug.06            | 21,3         | 12,3   | 41,3   | 37,8           | Nov.18    | 36,1         | 29,1    | 50,5  | 48,2              |
| Jan.30    | 23,4         | 18,7                                        | 37,4  | 35,6              | Apr.27    | 25,9         | 14,0    | 79,0       | 61,8                | Aug.07            | 12,6         | 5,6    | 17,1   | 17,0           | Nov.19    | 45,7         | 29,6    | 80,9  | 77,8              |
| Jan.31    | 20,4         | 16,2                                        | 26,2  | 25,1              | Apr.28    | 31,7         | 14,7    | 130,1      | 118,0               | Aug.08            | 17,9         | 12,9   | 30,8   | 30,4           | Nov.20    | 42,1         | 35,3    | 52,9  | 51,6              |
| Febr.01   | 19,7         | 13,9                                        | 24,7  | 24,5              | Apr.29    | 21,4         | 14,2    | 41,6       | 39,7                | Aug.09            | 16,5         | 10,7   | 29,0   | 28,0           | Nov.21    | 44,3         | 36,0    | 50,8  | 50,6              |
| Febr.02   | 15,3         | 10,6                                        | 20,8  | 19,9              | Apr.30    | 21,5         | 13,4    | 45,9       | 44,5                | Aug.10            | 16,5         | 9,1    | 30,8   | 29,7           | Nov.22    | 46,5         | 35,4    | 61,6  | 60,4              |
| Febr.03   | 12,2         | 10,4                                        | 16,2  | 15,0              | May 01    | 25,9         | 12,5    | 51,9       | 46,0                | Aug.11            | 16,0         | 8,6    | 30,0   | 28,8           | Nov.23    | 53,1         | 43,8    | 79,1  | 74,2              |
| Febr.04   | 17,8         | 11,3                                        | 25,1  | 25,0              | May 02    | 22,9         | 12,1    | 39,0       | 37,9                | Aug.12            | 15,5         | 12,3   | 22,7   | 20,7           | Nov.24    | 59,9         | 45,2    | 74,2  | 73,6              |
| Febr.05   | 24,5         | 19,9                                        | 33,5  | 31,9              | May 03    | 16,3         | 11,8    | 26,4       | 25,5                | Aug.13            | 19,1         | 12,8   | 39,2   | 34,8           | Nov.25    | 44,9         | 34,1    | 59,4  | 59,2              |
| Febr.06   | 35,9         | 26,7                                        | 46,9  | 46,7              | May 04    | 15,4         | 12,1    | 26,3       | 25,6                | Aug.14            | 14,3         | 9,7    | 21,6   | 21,3           | Nov.26    | 46,2         | 34,6    | 71,0  | 62,9              |
| Average   | 23           | 17                                          | 34    | 33                |           | 36           | 22      | 65         | 61                  |                   | 20           | 12     | 36     | 34             |           | 47           | 33      | 70    | 67                |

Comment:

The measurement was suspended on January 31 between 12.00 – 13.00 hours due to calibration. The measurement was suspended on April 26 between 11.00 – 12.00 hours due to calibration. The measurement was suspended on August 7 between 10.00 – 11.00 hours due to calibration. The measurement was suspended on November 19 between 11.00-12.00 hours due to calibration.

Table 16.2.2-5: 1. LMp on-the-spot measurements/tests – NOx.







Figure 16.2.2-6: 1. LMp - NO<sub>x</sub> hourly run-off curves

| NO <sub>x</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------|----|----|----|--|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                                 |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 01. 24-02.06.)                                           | <b>1.</b> TEST (2012. 01. 24-02.06.) 23 17 34 33 |    |    |    |  |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 04. 21-05.04.)                                           | 36                                               | 22 | 65 | 61 |  |  |  |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012. 08. 01-14.) 20 12 36 34                                  |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012. 11. 13-26.) 47 33 70 67                                  |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |  |

Table 16.2.2-6: 1. LMp NO<sub>x</sub> measurements/tests results – measurement by periods



koncentráció - concentration, erőmű területe - power plant area, nincs határérték - no limit, mérés - measurement/test

Figure 16.2.2-7: 1. LMp - NO<sub>x</sub> daily average concentration values

Decree 4/2011. (I. 14.) VM on air load limits and emission limits for stationary air polluting point sources does not define any immission limit for  $NO_x$ .

The former Decree 14/2001.(V.9.) KöM-EüM-FVM defined 200  $\mu$ g/m<sup>3</sup> hourly, 150  $\mu$ g/m<sup>3</sup> 24-hour, 70  $\mu$ g/m<sup>3</sup> annual limit for the NO<sub>x</sub>.

Based on the above figures we can state that the measured  $NO_x$  values were not higher than the hourly and the 24-hour limits.

The NO<sub>x</sub> hourly and daily values showed almost the same characteristics as the NO<sub>2</sub>-values.

The highest measured hourly NO<sub>x</sub> value measured during the  $2^{nd}$  measuring period on April 28, 2012between 4.00-5.00 a.m. was 130 µg/m<sup>3</sup>.

Average values of NO<sub>x</sub> measurements during the 4 measuring periods were:  $23 \mu g/m^3$ ,  $36 \mu g/m^3$ ,  $20 \mu g/m^3$ ,  $47 \mu g/m^3$ .

 $NO_x$  measurement results – similarly to  $NO_2$  measurement results – showed the volatility not in line with the heatingnon-heating seasons, and values measured in April were higher than values measured during the January heating seasons.

#### SO<sub>2</sub> immission

|           | SO <sub>2</sub> concentration<br>Based on daily assessment hourly concentration values |        |       |                   |           |              |        |          |                   |                |              |      |       |                |           |              |        |       |                   |
|-----------|----------------------------------------------------------------------------------------|--------|-------|-------------------|-----------|--------------|--------|----------|-------------------|----------------|--------------|------|-------|----------------|-----------|--------------|--------|-------|-------------------|
|           |                                                                                        |        |       |                   |           |              | Base   | d on dai | ly assessmen      | t hourly conce | entration va | lues |       |                |           |              |        |       |                   |
|           | 1                                                                                      | . Test |       |                   |           | 2            | . Test |          |                   |                | 3.           | TEST |       |                |           | 4            | . Test |       |                   |
| Measuring | Aver-<br>age                                                                           | Min    | Max   | 98%<br>percentile | Measuring | Aver-<br>age | Min    | Max      | 98%<br>percentile | Measuring      | Aver-age     | Min  | Max   | 98% percentile | Measuring | Aver-<br>age | Min    | Max   | 98%<br>percentile |
| penod     |                                                                                        |        | µg/m³ |                   | period    |              | •      | µg/m³    | -                 | penod          |              | -    | µg/m³ |                | period    |              |        | µg/m³ |                   |
| Jan.24    | 2,1                                                                                    | 1,1    | 3,5   | 3,3               | Apr.21    | 0,9          | 0,7    | 1,3      | 1,3               | Aug.01         | 0,9          | 0,7  | 1,4   | 1,3            | Nov.13    | 0,7          | 0,5    | 1,2   | 1,2               |
| Jan.25    | 2,4                                                                                    | 1,6    | 3,2   | 3,1               | Apr.22    | 0,9          | 0,7    | 1,9      | 1,9               | Aug.02         | 0,7          | 0,6  | 0,9   | 0,9            | Nov.14    | 1,1          | 0,9    | 1,5   | 1,5               |
| Jan.26    | 1,9                                                                                    | 0,9    | 3,0   | 2,9               | Apr.23    | 1,0          | 0,7    | 2,2      | 2,2               | Aug.03         | 0,6          | 0,6  | 0,7   | 0,7            | Nov.15    | 1,1          | 0,7    | 1,4   | 1,4               |
| Jan.27    | 2,2                                                                                    | 1,3    | 3,0   | 3,0               | Apr.24    | 1,0          | 0,7    | 1,9      | 1,9               | Aug.04         | 0,6          | 0,6  | 0,8   | 0,8            | Nov.16    | 0,9          | 0,7    | 1,6   | 1,6               |
| Jan.28    | 2,4                                                                                    | 1,7    | 3,1   | 3,1               | Apr.25    | 0,8          | 0,7    | 1,2      | 1,2               | Aug.05         | 0,7          | 0,5  | 1,9   | 1,4            | Nov.17    | 1,2          | 0,8    | 1,9   | 1,9               |
| Jan.29    | 3,5                                                                                    | 2,8    | 4,8   | 4,6               | Apr.26    | 1,2          | 0,6    | 2,3      | 2,3               | Aug.06         | 0,6          | 0,5  | 0,6   | 0,6            | Nov.18    | 1,3          | 0,8    | 2,0   | 2,0               |
| Jan.30    | 2,7                                                                                    | 1,4    | 4,9   | 4,3               | Apr.27    | 0,8          | 0,7    | 1,2      | 1,2               | Aug.07         | 0,8          | 0,6  | 1,2   | 1,2            | Nov.19    | 1,2          | 0,8    | 1,7   | 1,7               |
| Jan.31    | 3,4                                                                                    | 1,8    | 4,9   | 4,8               | Apr.28    | 0,8          | 0,7    | 1,2      | 1,2               | Aug.08         | 0,8          | 0,6  | 1,3   | 1,3            | Nov.20    | 1,2          | 0,8    | 1,8   | 1,8               |
| Febr.01   | 2,7                                                                                    | 1,4    | 4,2   | 4,2               | Apr.29    | 0,9          | 0,7    | 1,4      | 1,4               | Aug.09         | 0,6          | 0,5  | 1,2   | 1,1            | Nov.21    | 1,0          | 0,7    | 1,8   | 1,7               |
| Febr.02   | 2,5                                                                                    | 1,1    | 4,1   | 4,0               | Apr.30    | 0,8          | 0,7    | 1,0      | 1,0               | Aug.10         | 1,0          | 0,5  | 1,7   | 1,7            | Nov.22    | 1,2          | 0,7    | 2,1   | 2,1               |
| Febr.03   | 2,5                                                                                    | 2,1    | 3,4   | 3,2               | May 01    | 0,9          | 0,7    | 1,4      | 1,4               | Aug.11         | 0,8          | 0,5  | 1,3   | 1,3            | Nov.23    | 1,0          | 0,8    | 1,3   | 1,3               |
| Febr.04   | 3,4                                                                                    | 1,9    | 5,4   | 5,3               | May 02    | 0,8          | 0,7    | 1,2      | 1,2               | Aug.12         | 0,6          | 0,5  | 0,8   | 0,8            | Nov.24    | 0,9          | 0,8    | 1,3   | 1,3               |
| Febr.05   | 3,3                                                                                    | 0,9    | 5,5   | 5,5               | May 03    | 1,0          | 0,7    | 1,5      | 1,5               | Aug.13         | 0,6          | 0,5  | 1,0   | 1,0            | Nov.25    | 1,4          | 0,9    | 2,7   | 2,6               |
| Febr.06   | 6,4                                                                                    | 2,8    | 10,1  | 10,1              | May 04    | 0,9          | 0,7    | 1,3      | 1,3               | Aug.14         | 0,8          | 0,5  | 1,5   | 1,5            | Nov.26    | 1,2          | 0,7    | 2,3   | 2,2               |
| Average   | 3                                                                                      | 2      | 5     | 4                 |           | 1            | 1      | 2        | 1                 |                | 1            | 1    | 2     | 1              |           | 1            | 1      | 2     | 2                 |

Comment:

The measurement was suspended on January 31 between 12.00 – 13.00 hours due to calibration. The measurement was suspended on April 26 between 11.00 – 12.00 hours due to calibration. The measurement was suspended on August 7 between 10.00 – 11.00 hours due to calibration. The measurement was suspended on November 19 between 11.00-12.00 hours due to calibration.

Table 16.2.2-7: 1. LMp on-the-spot measurements/tests – SO2.

## The following figures present the hourly SO<sub>2</sub> concentration values.



koncentráció - concentration, erőmű területe - power plant area, mérési időszak - measurement period, óra - hour

Figure 16.2.2-8: 1. LMp - SO<sub>2</sub> hourly run-off curves

| SO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |   |   |   |   |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|---|---|---|---|--|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                                 |   |   |   |   |  |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 01. 24-02.06.)                                           | 3 | 2 | 5 | 4 |  |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 04. 21-05.04.)                                           | 1 | 1 | 2 | 1 |  |  |  |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012. 08. 01-14.) 1 1 2 1                                      |   |   |   |   |  |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012. 11. 13-26.) 1 1 2 2                                      |   |   |   |   |  |  |  |  |  |  |  |  |  |  |

Table 16.2.2-8: 1. LMp SO2 measurements/tests results - - measurement by periods





Figure 16.2.2-9: 1. LMp – SO<sub>2</sub> daily average concentration values

The measured hourly SO<sub>2</sub> immission values were well below the 250 µg/m<sup>3</sup> hourly limit.

Among measurement results, concentration values measured during the 1<sup>st</sup> measuring period are higher than the concentration values of the other measuring periods, the highest hourly concentration was also measured during this measurement period, the value was 10,1  $\mu$ g/m<sup>3</sup>, 4% of the hourly limit.

The 24-hour average concentration values were well below the 125  $\mu$ g/m<sup>3</sup> daily limit.

Average values of the  $SO_2$  measurements during the four measuring periods were:  $3 \mu g/m^3$ ,  $1 \mu g/m^3$ ,  $1 \mu g/m^3$ ,  $1 \mu g/m^3$ ,  $1 \mu g/m^3$ .

#### CO immission

|           | CO concentration<br>Based on daily assessment hourly concentration values * |         |                   |         |         |       |         |                   |            |             |             |          |                   |            |         |       |         |                   |         |
|-----------|-----------------------------------------------------------------------------|---------|-------------------|---------|---------|-------|---------|-------------------|------------|-------------|-------------|----------|-------------------|------------|---------|-------|---------|-------------------|---------|
|           |                                                                             |         |                   |         |         |       | Based   | d on daily        | assessment | hourly conc | entration v | /alues * |                   |            |         |       |         |                   |         |
|           |                                                                             | 1. Test |                   |         |         |       | 2. TEST |                   |            |             |             | 3. Test  |                   |            |         |       | 4. Test |                   |         |
| Measuring | Aver-                                                                       | Min     | Max               | 98%     | Measur. | Aver- | Min     | Max               | 98%        | Measur.     | Aver-       | Min      | Max               | 98%        | Measur. | Aver- | Min     | Max               | 98%     |
| period    | aye                                                                         | lk      | ug/m <sup>3</sup> | percent | period  | aye   | L       | ıg/m <sup>3</sup> | percentile | penou       | aye         | L L      | ıq/m <sup>3</sup> | percentile | penou   | aye   |         | ug/m <sup>3</sup> | percent |
| Jan.24    | 272,0                                                                       | 148,0   | 443,0             | 423,7   | Apr.21  | 293,5 | 138,0   | 477,0             | 463,7      | Aug.01      | 223,8       | 64,0     | 456,0             | 450,0      | Nov.13  | 656,2 | 294,0   | 1112,0            | 1084,4  |
| Jan.25    | 324,7                                                                       | 184,0   | 694,0             | 653,5   | Apr.22  | 356,2 | 152,0   | 510,0             | 505,4      | Aug.02      | 214,7       | 126,0    | 456,0             | 391,1      | Nov.14  | 370,7 | 193,0   | 634,0             | 605,0   |
| Jan.26    | 467,5                                                                       | 255,0   | 1186,0            | 976,2   | Apr.23  | 252,1 | 122,0   | 415,0             | 408,6      | Aug.03      | 201,8       | 48,0     | 717,0             | 640,2      | Nov.15  | 301,3 | 101,0   | 512,0             | 503,7   |
| Jan.27    | 492,2                                                                       | 261,0   | 824,0             | 796,9   | Apr.24  | 286,5 | 135,0   | 716,0             | 601,0      | Aug.04      | 271,3       | 50,0     | 1283,0            | 1118,8     | Nov.16  | 442,9 | 224,0   | 870,0             | 864,0   |
| Jan.28    | 463,0                                                                       | 187,0   | 829,0             | 765,5   | Apr.25  | 331,4 | 126,0   | 507,0             | 491,4      | Aug.05      | 219,6       | 110,0    | 385,0             | 373,0      | Nov.17  | 391,6 | 154,0   | 644,0             | 635,3   |
| Jan.29    | 504,0                                                                       | 253,0   | 848,0             | 770,3   | Apr.26  | 294,3 | 140,0   | 431,0             | 431,0      | Aug.06      | 171,3       | 82,0     | 304,0             | 288,8      | Nov.18  | 210,4 | 84,0    | 437,0             | 408,9   |
| Jan.30    | 488,0                                                                       | 197,0   | 903,0             | 834,9   | Apr.27  | 279,5 | 79,0    | 567,0             | 547,2      | Aug.07      | 214,7       | 51,0     | 606,0             | 572,6      | Nov.19  | 317,7 | 91,0    | 791,0             | 675,3   |
| Jan.31    | 398,8                                                                       | 142,0   | 886,0             | 807,2   | Apr.28  | 272,1 | 113,0   | 665,0             | 602,4      | Aug.08      | 288,9       | 124,0    | 553,0             | 533,7      | Nov.20  | 393,2 | 129,0   | 742,0             | 727,3   |
| Febr.01   | 416,1                                                                       | 119,0   | 839,0             | 836,7   | Apr.29  | 271,3 | 101,0   | 906,0             | 769,8      | Aug.09      | 205,2       | 99,0     | 313,0             | 305,2      | Nov.21  | 431,2 | 174,0   | 610,0             | 596,2   |
| Febr.02   | 317,4                                                                       | 130,0   | 567,0             | 552,3   | Apr.30  | 432,3 | 116,0   | 966,0             | 914,5      | Aug.10      | 223,0       | 84,0     | 584,0             | 485,6      | Nov.22  | 406,6 | 113,0   | 1172,0            | 1151,3  |
| Febr.03   | 256,8                                                                       | 81,0    | 607,0             | 595,0   | May 01  | 281,3 | 96,0    | 941,0             | 856,8      | Aug.11      | 321,8       | 117,0    | 525,0             | 504,3      | Nov.23  | 343,8 | 143,0   | 548,0             | 538,8   |
| Febr.04   | 457,3                                                                       | 121,0   | 772,0             | 746,2   | May 02  | 229,8 | 102,0   | 571,0             | 510,7      | Aug.12      | 326,3       | 128,0    | 806,0             | 729,6      | Nov.24  | 405,5 | 114,0   | 919,0             | 900,1   |
| Febr.05   | 644,0                                                                       | 313,0   | 1166,0            | 1136,1  | May 03  | 209,3 | 90,0    | 453,0             | 434,6      | Aug.13      | 294,2       | 123,0    | 1064,0            | 869,9      | Nov.25  | 406,3 | 246,0   | 688,0             | 681,6   |
| Febr.06   | 658,9                                                                       | 310,0   | 1145,0            | 1045,6  | May 04  | 280,4 | 123,0   | 831,0             | 751,9      | Aug.14      | 169,9       | 66,0     | 285,0             | 277,6      | Nov.26  | 439,6 | 185,0   | 813,0             | 810,7   |
| Average   | 440                                                                         | 193     | 836               | 781     |         | 291   | 117     | 640               | 592        |             | 239         | 91       | 595               | 539        |         | 394   | 160     | 749               | 727     |

Comment:

\* Maximum of daily 8-hour moving average concentrations. The maximum value shall be selected among the 8-hour moving average values calculated on the basis of the hourly averages. The 8-hour average values that were so calculated shall refer to those days, on which the 8-hour period ends, thus the first test period of any day will last from 17 hours of the previous day until 01 hour of the given day. The last test on any day will last from 16 to 24 hours within the given day.

The measurement was suspended on January 31 between 12.00 – 13.00 hours due to calibration.

The measurement was suspended on April 26 between 11.00 – 12.00 hours due to calibration.

The measurement was suspended on August 7 between 10.00 – 11.00 hours due to calibration.

The measurement was suspended on November 19 between 11.00 - 12.00 due to calibration.

Table 16.2.2-9: 1. LMp on-the-spot measurements/tests - CO







Figure 16.2.2-10: 1. LMp - CO hourly run-off curves

| CO concentration<br>Based on hourly measurement values<br>(µg/m³) |                                                      |     |     |     |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------|-----|-----|-----|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                    |                                                      |     |     |     |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 01. 24-02.06.)                              | <b>1. TEST</b> (2012. 01. 24-02.06.) 564 318 841 829 |     |     |     |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 04. 21-05.04.)                              | 396                                                  | 297 | 536 | 521 |  |  |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012. 08. 01-14.) 348 251 482 480                 |                                                      |     |     |     |  |  |  |  |  |  |  |  |  |
| <b>4. TEST</b> (2012. 11. 13-26.) 564 357 1050 958                |                                                      |     |     |     |  |  |  |  |  |  |  |  |  |

Table 16.2.2-10: 1. LMp CO measurements/tests results - measurement by periods



koncentráció - concentration, erőmű területe - power plant area, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-11: 1. LMp – CO daily average concentration

The measured hourly CO immission values always were well below the 10 000 µg/m<sup>3</sup> hourly limit.

The highest measured hourly concentration during the 3rd measurement period was 1283 µg/m³, 13% of the limit.

Average concentration values generated from the 8-hour moving maximum values remained below 20% of the 24-hour limit (5 000  $\mu$ g/m<sup>3</sup>).

Bi-weekly average values of the CO measurements were: 564 µg/m<sup>3</sup>, 396 µg/m<sup>3</sup>, 348 µg/m<sup>3</sup>, 564 µg/m<sup>3</sup>.

The CO measurement results show the volatility in conformity with the heating-non-heating seasons.

## PM<sub>10</sub>, TSPM 24-hour concentration

| Measuring | <b>PM</b> 10 | TSPM           | Measuring | <b>PM</b> 10 | TSPM | Measuring | <b>PM</b> 10 | TSPM | Measuring | <b>PM</b> 10 | TSPM |
|-----------|--------------|----------------|-----------|--------------|------|-----------|--------------|------|-----------|--------------|------|
| period    | μg/          | m <sup>3</sup> | period    | μg           | /m³  | period    | μg           | /m³  | period    | μg           | /m³  |
| Jan.24    | 11           | 20             | Apr.21    | 14           | 18   | Aug.01    | 20           | 29   | Nov.13    | 44           | 45   |
| Jan.25    | 22           | 29             | Apr.22    | 13           | 15   | Aug.02    | 21           | 31   | Nov.14    | 22           | 25   |
| Jan.26    | 28           | 39             | Apr.23    | 11           | 13   | Aug.03    | 21           | 35   | Nov.15    | 25           | 26   |
| Jan.27    | 45           | 57             | Apr.24    | 9            | 12   | Aug.04    | 20           | 27   | Nov.16    | 28           | 33   |
| Jan.28    | 64           | 73             | Apr.25    | 10           | 12   | Aug.05    | 31           | 36   | Nov.17    | 39           | 41   |
| Jan.29    | 47           | 61             | Apr.26    | 14           | 20   | Aug.06    | 38           | 55   | Nov.18    | 25           | 27   |
| Jan.30    | 66           | 76             | Apr.27    | 15           | 23   | Aug.07    | 15           | 25   | Nov.19    | 30           | 32   |
| Jan.31    | 55           | 63             | Apr.28    | 31           | 43   | Aug.08    | 13           | 22   | Nov.20    | 42           | 44   |
| Febr.01   | 49           | 62             | Apr.29    | 28           | 41   | Aug.09    | 16           | 25   | Nov.21    | 44           | 49   |
| Febr.02   | 33           | 42             | Apr.30    | 29           | 39   | Aug.10    | 18           | 29   | Nov.22    | 32           | 36   |
| Febr.03   | 23           | 32             | May 01    | 32           | 43   | Aug.11    | 13           | 19   | Nov.23    | 53           | 65   |
| Febr.04   | 30           | 40             | May 02    | 35           | 44   | Aug.12    | 11           | 15   | Nov.24    | 47           | 49   |
| Febr.05   | 66           | 77             | May 03    | 25           | 42   | Aug.13    | 32           | 93   | Nov.25    | 49           | 53   |
| Febr.06   | 85           | 93             | May 04    | 13           | -    | Aug.14    | 15           | 27   | Nov.26    | 55           | 60   |
| min       | 11           | 20             |           | 9            | 12   |           | 11           | 15   |           | 22           | 25   |
| max       | 85           | 93             |           | 35           | 44   |           | 38           | 93   |           | 55           | 65   |
| Average   | 45           | 54             |           | 20           | 28   |           | 20           | 33   |           | 38           | 42   |

Table 16.2.2-11: 1. LMp on-the-spot measurements/tests – PM10, TSPM



The following figures present the  $PM_{10}$  and TSPM daily concentration values:

koncentráció - concentration, erőmű területe - power plant area, mérési időszak - measurement period, dátum - date, határérték - limit

Figure 16.2.2-12: 1. LMp - PM<sub>10</sub> and a TSPM daily run-off curves

The 24-hour average **PM**<sub>10</sub> values were higher than the limit during the <u>1st measuring period</u> throughout 5 days. We analysed also the results measured at other measuring points of the country, and between January 28-31 the measured values were between 85-29  $\mu$ g/m<sup>3</sup>, and between February 5-6 they were between 62-42  $\mu$ g/m<sup>3</sup>. On the subsequent days high (70-130  $\mu$ g/m<sup>3</sup>) concentration values were dominant all over the country.

During the 2nd and 3rd measuring periods the 24-hour average and maximum PM<sub>10</sub> values remained blow the limit.

During the <u>4th measuring period</u> the 24-hour average  $PM_{10}$  values were for 2 days less than 10% lower than the limit: the concentration value was 53  $\mu$ g/m<sup>3</sup> on November 23 and 55  $\mu$ g/m<sup>3</sup> November 26. During this period the limit higher than the limit were measured at several other measuring points of the country.

Decree 4/2011. (I. 14.) VM on air load limits and emission limits for stationary air polluting point sources defines no limit for **TSPM**.

The former Decree 14/2001.(V.9.) KöM-EüM-FVM defined for the TSPM 200 µg/m<sup>3</sup> hourly, 100 µg/m<sup>3</sup> 24-hour, and 50 µg/m<sup>3</sup> annual limit values.

Having analysed the measurement results we can state that the daily concentration of the measured TSPM values remained below the former 24-hour limit.

| Settling | dust |
|----------|------|
|----------|------|

| Settling du | ust concent | ration                  |
|-------------|-------------|-------------------------|
| First days  | Last days   | g/m <sup>2</sup> x30nap |
| 2012.01.23  | 2012.02.23  | 1,04                    |
| 2012.02.23  | 2012.03.28  | 1,8                     |
| 2012.03.28  | 2012.04.26  | 2,2                     |
| 2012.04.26  | 2012.05.22  | 6,6                     |
| 2012.05.22  | 2012.06.25  | 3,7                     |
| 2012.06.25  | 2012.07.31  | 3,5                     |
| 2012.07.31  | 2012.08.30  | 5,2                     |
| 2012.09.11  | 2012.10.12  | 2,3                     |
| 2012.10.12  | 2012.11.12  | 0,6                     |
| 2012.11.12  | 2012.12.12  | 0,5                     |
| 2012.12.12  | 2013.01.11  | 0,3                     |
| 2013.01.11  | 2013.02.12  | 0,9                     |
| 2013.02.25  | 2013.03.29  | 0,9                     |

Table 16.2.2-12: 1. LMp on-the-spot measurements/tests – Settling dust

The Decree 4/2011. (I. 14.) VM. on air load limits and emission limits for stationary air polluting point sources defines no limit for **settling dust** either.

The annulled Decree 14/2001.(V.9.) KöM-EüM-FVM defined 16 g/m<sup>2</sup> x 30 daily and 120 t/km<sup>2</sup> x annual limit.

Having analysed the measurement results we can clearly see that the measurement results during the former 30 days remained below the limit, as 41% of the highest limit.

## 16.2.2.5.2 Paks, Northern access road, Plant Northern Access road - 2. LMp



mérés - measurement/test source : Google Earth Figure 16.2.2-13: 2. LMp location



1. TEST



2. TEST









4. TEST

SETTLING DUST SAMPLING UNITS

Figure 16.2.2-14: Location of testing truck and settling dust sampling units at 2 LMp points

## NO<sub>2</sub> immission

|                                                                               | NO <sub>2</sub> concentration<br>Based on daily assessment hourly concentration values                                                                                                                                                                                                                                                                                                          |        |       |                   |         |          |        |           |                   |                |              |      |       |                |         |         |        |      |                   |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------------|---------|----------|--------|-----------|-------------------|----------------|--------------|------|-------|----------------|---------|---------|--------|------|-------------------|
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |        |       |                   |         |          | Base   | d on dail | ly assessmen      | t hourly conce | entration va | lues |       |                |         |         |        |      |                   |
|                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                               | . Test |       |                   |         | 2        | . Test |           |                   |                | 3.           | TEST |       |                |         | 4       | . Test |      |                   |
| Measur.                                                                       | Aver-<br>age                                                                                                                                                                                                                                                                                                                                                                                    | Min    | Max   | 98%<br>percentile | Measur. | Aver-age | Min    | Max       | 98%<br>percentile | Measuring      | Aver-age     | Min  | Max   | 98% percentile | Measur. | Average | Min    | Max  | 98%<br>percentile |
| penou                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                 | ŀ      | ug/m³ |                   | penou   |          | ۲      | ıg/m³     |                   | period         |              |      | ug/m³ |                | penou   |         | μ      | g/m³ |                   |
| Febr.24                                                                       | 29                                                                                                                                                                                                                                                                                                                                                                                              | 14     | 77    | 76                | May 23  | 17       | 10     | 58        | 53                | Sept.13        | 21           | 18   | 24    | 23             | Dec.13  | 41      | 16     | 130  | 127               |
| Febr.25                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                              | 12     | 48    | 48                | May 24  | 14       | 10     | 17        | 17                | Sept.14        | 22           | 20   | 26    | 26             | Dec.14  | 31      | 24     | 39   | 38                |
| Febr.26                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                              | 8      | 19    | 17                | May 25  | 10       | 7      | 14        | 14                | Sept.15        | 23           | 15   | 36    | 34             | Dec.15  | 26      | 22     | 33   | 33                |
| Febr.27 11 8 15 15 May 26 14 8 31 31 32   Febr.29 20 42 420 24 May 27 42 7 28 |                                                                                                                                                                                                                                                                                                                                                                                                 |        |       |                   | 29      | Sept.16  | 29     | 16        | 83                | 70             | Dec.16       | 22   | 18    | 29             | 29      |         |        |      |                   |
| Febr.28                                                                       | Febr.28 26 12 109 94   1 109 94 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 |        |       | May 27            | 13      | 7        | 28     | 28        | Sept.17           | 46             | 27           | 164  | 146   | Dec.17         | 28      | 15      | 57     | 57   |                   |
| Febr.29                                                                       | 17                                                                                                                                                                                                                                                                                                                                                                                              | 13     | 22    | 21                | May 30  | 15       | 9      | 64        | 51                | Sept.18        | 41           | 27   | 66    | 66             | Dec.18  | 26      | 17     | 38   | 37                |
| March01                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                              | 17     | 60    | 56                | May 31  | 14       | 9      | 58        | 51                | Sept.19        | 49           | 11   | 199   | 188            | Dec.19  | 26      | 20     | 31   | 31                |
| March02                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                              | 19     | 27    | 27                | June 01 | 15       | 8      | 43        | 40                | Sept.20        | 20           | 11   | 43    | 43             | Dec.20  | 37      | 17     | 121  | 101               |
| March03                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                              | 13     | 64    | 58                | June 02 | 11       | 8      | 24        | 23                | Sept.21        | 39           | 16   | 98    | 94             | Dec.21  | 26      | 15     | 46   | 46                |
| March04                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                              | 15     | 73    | 73                | June 03 | 11       | 7      | 39        | 33                | Sept.22        | 34           | 17   | 84    | 77             | Dec.22  | 14      | 11     | 18   | 17                |
| March05                                                                       | 34                                                                                                                                                                                                                                                                                                                                                                                              | 14     | 150   | 120               | June 04 | 13       | 8      | 33        | 32                | Sept.23        | 31           | 20   | 59    | 56             | Dec.23  | 14      | 11     | 20   | 19                |
| March06                                                                       | 44                                                                                                                                                                                                                                                                                                                                                                                              | 15     | 231   | 221               | June 05 | 9        | 8      | 12        | 11                | Sept.24        | 51           | 26   | 147   | 144            | Dec.24  | 30      | 19     | 61   | 56                |
| March07                                                                       | 36                                                                                                                                                                                                                                                                                                                                                                                              | 9      | 227   | 203               | June 06 | 12       | 9      | 25        | 25                | Sept.25        | 31           | 18   | 63    | 63             | Dec.25  | 18      | 15     | 26   | 25                |
| March08                                                                       | 41                                                                                                                                                                                                                                                                                                                                                                                              | 17     | 183   | 136               | June 07 | 19       | 10     | 70        | 63                | Sept.26        | 47           | 22   | 220   | 188            | Dec.26  | 18      | 13     | 27   | 27                |
| Average                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                              | 13     | 93    | 83                |         | 13       | 8      | 37        | 34                |                | 35           | 19   | 94    | 87             |         | 25      | 17     | 48   | 46                |

#### Comment:

The measurement was suspended on February 29 between 11.00 – 12.00 hours due to calibration, on March 1 between 6.00-8.00 hours due to voltage volatility.

The measurement was suspended from May 28. 00.00 hour until May 29. 24.00 hour and in June 1 between 10.00 – 11.00 hours due to power shortage.

The measurement was suspended on August 20 between 10.00 – 11.00 hours due to calibration.

The measurement was suspended on December 19 between 11.00 – 12.00 hours due to calibration.

Table 16.2.2-13: 2. LMp on-the-spot measurements/tests – NO<sub>2</sub>.





koncentráció - concentration, Északi bekötőút mellett - along the north access road, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-15: 2. LMp - NO<sub>2</sub> hourly run-off curves along the north access road

| NO<br>Based on H                            | NO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |     |     |                |  |  |  |  |  |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------|-----|-----|----------------|--|--|--|--|--|--|--|--|
|                                             | Average                                                                        | Min | Max | 98% percentile |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 02. 24-03.08.)        | 27                                                                             | 13  | 93  | 83             |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 05. 23-06.07.)        | 13                                                                             | 8   | 37  | 34             |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012.09.13-26.)             | 35                                                                             | 19  | 94  | 87             |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012.12.13-26.) 25 17 48 46 |                                                                                |     |     |                |  |  |  |  |  |  |  |  |

Table 16.2.2-14: 2. LMp NO<sub>2</sub> measurements/tests results – measurement by periods



koncentráció - concentration, Északi bekötőút mellett - along the north access road, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-16: 2. LMp -  $NO_2$  daily average concentration at the north access road

The NO<sub>2</sub> hourly values measured during the four measuring periods were higher than the 100  $\mu$ g/m<sup>3</sup> hourly limit in 21 occasions, during the 1st measuring period 8 times, in the 3rd measuring period also in 8 times, and in the 4th measuring period 5 times.

There was no excess to the 24-hour limit.

The hourly run-off curves can well characterise the daily volatility.  $NO_2$  concentration increased in the morning hours between 04.00-09.00 a.m., and limits were also exceeded during this period.  $NO_2$  concentration also increased during the evening hours.

There was no factor detected at the beginning of the  $1^{st}$  measuring period that could have direct impact onto the measurement results, but the nearly parking lot was still shut down later due to an event, thus passenger cars were parked next to the measuring bus during the second half of the test. This had significant effects onto the measurement results, primarily at the beginning and end of the working time, as this is clearly demonstrated by the hourly run-off curves showing an significantly rising NO<sub>2</sub> concentration.

The hourly limit exceeding values were 1-131% higher than the limit. The highest hourly NO<sub>2</sub> value was measured during the 1st measuring period on March 6, 2012 between 07.00-08.00 a.m., its value was 231  $\mu$ g/m<sup>3</sup>.

Bi-weekly average values of NO<sub>2</sub> measurements/tests were: 27 µg/m<sup>3</sup>, 13 µg/m<sup>3</sup>, 35 µg/m<sup>3</sup>, 25 µg/m<sup>3</sup>.

The volatility shown in the  $NO_2$  measurement results showed no relation with the heating-non-heating seasons, and the dominant impacts of traffic along the access road can be clearly seen.

### NO<sub>x</sub> immission

|         | NO <sub>x</sub> concentration                         |         |       |                   |           |              |         |       |                   |           |              |        |       |                   |           |              |         |       |                   |
|---------|-------------------------------------------------------|---------|-------|-------------------|-----------|--------------|---------|-------|-------------------|-----------|--------------|--------|-------|-------------------|-----------|--------------|---------|-------|-------------------|
|         | Based on daily assessment hourly concentration values |         |       |                   |           |              |         |       |                   |           |              |        |       |                   |           |              |         |       |                   |
|         |                                                       | 1. TEST |       |                   |           | 2            | 2. Test |       |                   |           | 3            | . Test |       |                   |           | 4            | I. TEST |       |                   |
| Measur. | Aver<br>-age                                          | Min     | Max   | 98%<br>percentile | Measuring | Aver-<br>age | Min     | Max   | 98%<br>percentile | Measuring | Aver-<br>age | Min    | Max   | 98%<br>percentile | Measuring | Aver-<br>age | Min     | Max   | 98%<br>percentile |
| pened   |                                                       |         | µg/m³ |                   | pened     |              | ŀ       | ug/m³ |                   | period    |              | μ      | ıg/m³ |                   | µg/m      |              |         | ıg/m³ |                   |
| Febr.24 | 35,7                                                  | 16,3    | 109,7 | 105,8             | May 23    | 21,6         | 12,0    | 85,3  | 78,0              | Sept.13   | 25,5         | 21,4   | 29,6  | 29,4              | Dec.13    | 60,1         | 20,4    | 217,9 | 212,0             |
| Febr.25 | 24,1                                                  | 14,5    | 62,1  | 57,1              | May 24    | 15,7         | 11,6    | 19,4  | 18,8              | Sept.14   | 26,8         | 23,3   | 30,3  | 30,2              | Dec.14    | 39,0         | 29,3    | 53,6  | 51,9              |
| Febr.26 | 13,9                                                  | 10,4    | 21,0  | 19,8              | May 25    | 12,3         | 9,9     | 17,1  | 16,9              | Sept.15   | 27,1         | 16,3   | 44,7  | 42,1              | Dec.15    | 31,4         | 27,2    | 43,4  | 40,1              |
| Febr.27 | 13,1                                                  | 9,8     | 19,8  | 18,7              | May 26    | 16,2         | 10,0    | 34,6  | 32,5              | Sept.16   | 36,3         | 17,6   | 123,8 | 97,2              | Dec.16    | 27,2         | 22,5    | 38,1  | 36,0              |
| Febr.28 | 32,4                                                  | 14,3    | 164,7 | 138,3             | May 27    | 16,2         | 9,4     | 34,6  | 32,4              | Sept.17   | 69,1         | 34,2   | 301,0 | 267,7             | Dec.17    | 32,9         | 19,6    | 62,8  | 62,6              |
| Febr.29 | 19,4                                                  | 15,1    | 24,1  | 23,8              | May 30    | 18,3         | 10,0    | 97,9  | 73,9              | Sept.18   | 55,1         | 30,8   | 104,2 | 99,0              | Dec.18    | 33,3         | 21,6    | 55,0  | 53,6              |
| March01 | 36,4                                                  | 19,2    | 73,0  | 71,6              | May 31    | 17,2         | 10,3    | 84,6  | 70,6              | Sept.19   | 78,1         | 12,1   | 379,4 | 355,4             | Dec.19    | 31,8         | 24,4    | 38,5  | 38,1              |
| March02 | 26,5                                                  | 20,5    | 30,0  | 29,8              | June 01   | 18,0         | 9,7     | 60,4  | 53,2              | Sept.20   | 24,4         | 11,4   | 61,6  | 61,2              | Dec.20    | 52,9         | 21,4    | 205,4 | 167,2             |
| March03 | 23,4                                                  | 15,2    | 73,1  | 63,5              | June 02   | 12,6         | 9,2     | 27,8  | 26,0              | Sept.21   | 54,8         | 16,5   | 183,6 | 171,5             | Dec.21    | 36,0         | 20,0    | 68,6  | 65,9              |
| March04 | 30,4                                                  | 17,3    | 114,8 | 113,0             | June 03   | 13,6         | 9,1     | 52,4  | 43,9              | Sept.22   | 44,8         | 18,5   | 142,2 | 130,4             | Dec.22    | 18,3         | 15,1    | 22,1  | 22,1              |
| March05 | 39,1                                                  | 15,8    | 187,7 | 150,0             | June 04   | 14,6         | 9,5     | 40,0  | 38,8              | Sept.23   | 39,9         | 22,1   | 83,3  | 76,2              | Dec.23    | 19,5         | 15,3    | 25,0  | 24,6              |
| March06 | 64,3                                                  | 16,8    | 399,1 | 381,9             | June 05   | 10,8         | 9,1     | 13,5  | 13,1              | Sept.24   | 75,7         | 29,8   | 251,9 | 250,5             | Dec.24    | 42,6         | 24,4    | 94,6  | 87,8              |
| March07 | 52,0                                                  | 11,5    | 386,4 | 342,0             | June 06   | 14,0         | 10,5    | 26,9  | 26,6              | Sept.25   | 39,5         | 20,3   | 94,3  | 90,5              | Dec.25    | 23,7         | 19,7    | 38,9  | 36,8              |
| March08 | 50,5                                                  | 19,1    | 299,2 | 201,8             | June 07   | 23,8         | 11,9    | 109,7 | 101,3             | Sept.26   | 71,7         | 25,0   | 400,9 | 342,1             | Dec.26    | 24,5         | 18,5    | 37,2  | 36,0              |
| Average | 33                                                    | 15      | 140   | 123               |           | 16           | 10      | 50    | 45                |           | 48           | 21     | 159   | 146               |           | 34           | 21      | 71    | 67                |

Comment:

The measurement was suspended on February 29 between 11.00 – 12.00 hours due to calibration, on March 1 between 6.00-8.00 hour due to voltage volatility. The measurement was suspended from May 28. 00.00 hour until May 29. 24.00 hours, and on June 1 between 10.00 – 11.00 hours due to power outage. The measurement was suspended on August 20. between 10.00 – 11.00 hours due to calibration . The measurement was suspended on December 19 between 11.00 – 12.00 hours due to calibration.

Table 16.2.2-15: 2. LMp on-the-spot measurements/tests – NOx

### The following figures present the hourly NO<sub>x</sub> concentration values:



koncentráció - concentration, Északi bekötőút mellett - along the north access road, mérési időszak - measurement period, óra - hour

Figure 16.2.2-17: 2. LMp - NOx hourly run-off curves along the north access road

| NO <sub>x</sub> concentration<br>Based on hourly measurement values<br>(µg/m <sup>3</sup> ) |         |     |     |                |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|---------|-----|-----|----------------|--|--|--|--|--|--|--|
|                                                                                             | Average | Min | Max | 98% percentile |  |  |  |  |  |  |  |
| <b>1.</b> TEST (2012. 02. 24-03.08.)                                                        | 33      | 15  | 140 | 123            |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 05. 23-06.07.)                                                        | 16      | 10  | 50  | 45             |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012.09.13-26.)                                                             | 48      | 21  | 159 | 146            |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012.12.13-26.) 34 21 71 67                                                 |         |     |     |                |  |  |  |  |  |  |  |

Table 16.2.2-16: 2. LMp NOx measurements/tests results



koncentráció - concentration, Északi bekötőút mellett - along the north access road, nincs határérték - no limit, mérés - measurement/test

Figure 16.2.2-18: 2. LMp - NOx daily average concentration along the north access road

Decree 4/2011. (I. 14.) VM defines no immission limit for NO<sub>x</sub>. The former Decree 14/2001.(V.9.) KöM-EüM-FVM defined for the NO<sub>x</sub> 200  $\mu$ g/m<sup>3</sup> hourly, 150  $\mu$ g/m<sup>3</sup> 24-hour, and 70  $\mu$ g/m<sup>3</sup> annual limit. Thus the hourly values were higher than the permitted limit 5 times during the 1st measuring period, 8 times during the 3<sup>rd</sup> measuring period, and 4 times during the 4th measuring period. The values were 1-200 % higher than the limit formerly in effect.

The highest NO<sub>x</sub> value was measured during the 3rd measuring period, on September 26, 2012 between 07.00-08.00 a.m., its value was 401  $\mu$ g/m<sup>3</sup>.

There was no factor detected at the beginning of the 1<sup>st</sup> measuring period that could have direct impact onto the measurement results, but the nearly parking lot was still shut down later due to an event, thus passenger cars were parked next to the measuring bus during the second half of the test. (Unfortunately we were informed about this only when we were looking for the reason behind the high immission values after we closed the measurements.) This had significant effects onto the measurement results, primarily at the beginning and end of the working time

There was no excess to the 24-hour limit.

Bi-weekly average values of the NO<sub>x</sub> measurements/tests were: 33 µg/m<sup>3</sup>, 16 µg/m<sup>3</sup>, 48 µg/m<sup>3</sup>, 21 µg/m<sup>3</sup>.

The NO<sub>x</sub> hourly and daily values show a run-off similar to the NO<sub>2</sub> values. The volatility in NO<sub>x</sub> measurement results – similarly to the NO<sub>2</sub> measurement results – were not in line with the heating-non-heating seasonality, and the hourly run-off curves can well characterise the daily volatility. Similarly to NO<sub>2</sub>, NO<sub>x</sub> concentration also increased in the morning between 04.00-09.00 hours and in the evening between 17.00-24.00 hours.

## SO<sub>2</sub> immission

|           | SO <sub>2</sub> concentration |        |       |                   |           |              |         |          |                   |                |              |      |       |                |           |              |        |       |                   |  |
|-----------|-------------------------------|--------|-------|-------------------|-----------|--------------|---------|----------|-------------------|----------------|--------------|------|-------|----------------|-----------|--------------|--------|-------|-------------------|--|
|           |                               |        |       |                   |           |              | Base    | d on dai | ly assessmen      | t hourly conce | entration va | lues |       |                |           |              |        |       |                   |  |
|           | 1                             | . Test |       |                   |           | 2.           | . Test* |          |                   |                | 3.           | TEST |       |                |           | 4            | . TEST |       |                   |  |
| Measuring | Aver-<br>age                  | Min    | Max   | 98%<br>percentile | Measuring | Aver-<br>age | Min     | Max      | 98%<br>percentile | Measuring      | Average      | Min  | Max   | 98% percentile | Measuring | Aver-<br>age | Min    | Max   | 98%<br>percentile |  |
| penou     |                               |        | µg/m³ |                   | penda     |              |         | µg/m³    |                   | penou          |              |      | µg/m³ | T              | period h  |              |        | µg/m³ |                   |  |
| Febr.24   | 1,4                           | 1,0    | 1,9   | 1,9               | May 23    | 0,7          | 0,7     | 0,8      | 0,8               | Sept.13        | 1,2          | 0,6  | 1,8   | 1,8            | Dec.13    | 2,9          | 7,9    | 7,9   | 5,4               |  |
| Febr.25   | 0,9                           | 0,8    | 1,4   | 1,3               | May 24    | 0,9          | 0,7     | 1,4      | 1,4               | Sept.14        | 0,4          | 0,4  | 0,7   | 0,7            | Dec.14    | 5,5          | 7,6    | 7,5   | 6,2               |  |
| Febr.26   | 1,1                           | 0,8    | 2,1   | 2,0               | May 25    | 1,0          | 0,7     | 1,5      | 1,5               | Sept.15        | 0,5          | 0,4  | 0,8   | 0,8            | Dec.15    | 4,2          | 6,6    | 6,6   | 5,2               |  |
| Febr.27   | 1,4                           | 0,8    | 2,2   | 2,1               | May 26    | 0,8          | 0,7     | 1,1      | 1,1               | Sept.16        | 0,8          | 0,4  | 1,4   | 1,4            | Dec.16    | 3,9          | 4,7    | 4,7   | 4,4               |  |
| Febr.28   | 0,9                           | 0,8    | 1,7   | 1,4               | May 27    | 0,8          | 0,7     | 1,2      | 1,2               | Sept.17        | 0,6          | 0,4  | 1,3   | 1,3            | Dec.17    | 3,9          | 5,8    | 5,8   | 4,9               |  |
| Febr.29   | 0,8                           | 0,7    | 1,1   | 1,1               | May 30    | 0,7          | 0,6     | 1,0      | 1,0               | Sept.18        | 0,7          | 0,4  | 1,6   | 1,6            | Dec.18    | 4,4          | 6,4    | 6,4   | 5,4               |  |
| March01   | 0,9                           | 0,6    | 1,2   | 1,2               | May 31    | 0,7          | 0,5     | 1,3      | 1,3               | Sept.19        | 0,5          | 0,4  | 0,9   | 0,8            | Dec.19    | 3,8          | 6,0    | 5,8   | 4,6               |  |
| March02   | 1,2                           | 0,8    | 1,8   | 1,8               | June 01   | 0,8          | 0,5     | 1,3      | 1,3               | Sept.20        | 0,8          | 0,3  | 1,8   | 1,8            | Dec.20    | 3,6          | 4,6    | 4,5   | 4,2               |  |
| March03   | 1,2                           | 0,7    | 1,7   | 1,7               | June 02   | 0,5          | 0,5     | 0,8      | 0,7               | Sept.21        | 0,4          | 0,3  | 0,5   | 0,5            | Dec.21    | 3,8          | 4,3    | 4,3   | 4,0               |  |
| March04   | 1,0                           | 0,7    | 1,8   | 1,8               | June 03   | 0,7          | 0,5     | 1,1      | 1,1               | Sept.22        | 0,6          | 0,4  | 1,4   | 1,3            | Dec.22    | 4,1          | 4,5    | 4,5   | 4,3               |  |
| March05   | 1,2                           | 0,7    | 1,9   | 1,9               | June 04   | 0,9          | 0,5     | 1,3      | 1,3               | Sept.23        | 0,5          | 0,4  | 0,7   | 0,7            | Dec.23    | 4,1          | 6,6    | 6,3   | 5,0               |  |
| March06   | 1,0                           | 0,7    | 1,8   | 1,7               | June 05   | 0,8          | 0,5     | 1,7      | 1,7               | Sept.24        | 0,5          | 0,4  | 0,7   | 0,7            | Dec.24    | 3,3          | 5,3    | 5,2   | 4,4               |  |
| March07   | 1,1                           | 0,7    | 2,3   | 2,2               | June 06   | 0,9          | 0,6     | 1,5      | 1,5               | Sept.25        | 0,7          | 0,4  | 1,2   | 1,2            | Dec.25    | 3,5          | 4,3    | 4,3   | 3,9               |  |
| March08   | 1,5                           | 0,8    | 2,2   | 2,2               | June 07   | 0,5          | 0,5     | 0,7      | 0,7               | Sept.26        | 0,5          | 0,4  | 0,9   | 0,9            | Dec.26    | 3,1          | 4,6    | 4,6   | 3,9               |  |
| Average   | 1                             | 1      | 2     | 2                 |           | 1            | 1       | 1        | 1                 |                | 1            | 0    | 1     | 1              |           | 5            | 4      | 6     | 6                 |  |

Comment:

The measurement was suspended on February 29 between 11.00 – 12.00 hours due to calibration, on March 1 between 6.00-8.00 hours due to voltage volatility

The measurement was suspended from May 28. 00.00 hour until May 29. 24.00 hours and on June 1 between 10.00 – 11.00 hours due to power outage.

\* Based on the hourly measurements/tests the SO<sub>2</sub> levels were below the lower measurement limit.

The measurement was suspended on August 20. between 10.00 – 11.00 hours due to calibration.

The measurement was suspended on December 19 between 11.00 – 12.00 hours due to calibration.

Table 16.2.2-17: 2. LMp on-the-spot measurements/tests – SO<sub>2</sub>

The following figures present the hourly SO<sub>2</sub> concentration values:



#### Comment:

During the 2nd measuring period the result of the SO<sub>2</sub> measurement was below the lower limit.

koncentráció - concentration, Északi bekötőút mellett - along the north access road, mérési időszak - measurement period, óra - hour

Figure 16.2.2-19: 2. LMp - SO<sub>2</sub> hourly run-off curves along the north access road

| SO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m <sup>3</sup> ) |         |     |     |                |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|---------|-----|-----|----------------|--|--|--|--|--|--|--|
|                                                                                             | Average | Min | Max | 98% percentile |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 02. 24-03.08.)                                                        | 1       | 1   | 2   | 2              |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 05. 23-06.07.)                                                        | 1       | 1   | 1   | 1              |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012.09.13-26.)                                                             | 1       | 0   | 1   | 1              |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012.12.13-26.) 5 4 6 6                                                     |         |     |     |                |  |  |  |  |  |  |  |

Table 16.2.2-18: 2. LMp SO2 measurements/tests results



koncentráció - concentration, Északi bekötőút mellett - along the north access road, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-20: 2. LMp – SO<sub>2</sub> daily average concentration along the north access road

The measured hourly SO<sub>2</sub> immission values were well below the 250  $\mu$ g/m<sup>3</sup> hourly limit.

The highest hourly concentration values were measured during the 4th measurement period on December 13, between 17.00-18.00 hours, the value was 7,9  $\mu$ g/m<sup>3</sup>, 35 of the hourly limit.

The 24-hour average concentration values were also well below the 125 µg/m<sup>3</sup> daily limit.

Bi-weekly average values of the SO<sub>2</sub> measurements/tests were: 1 µg/m<sup>3</sup>, 1 µg/m<sup>3</sup>, 1 µg/m<sup>3</sup>, 5 µg/m<sup>3</sup>.

## CO immission

|           | CO concentration |         |        |                   |           |         |         |             |                   |             |             |         |        |                   |           |         |         |        |                   |
|-----------|------------------|---------|--------|-------------------|-----------|---------|---------|-------------|-------------------|-------------|-------------|---------|--------|-------------------|-----------|---------|---------|--------|-------------------|
|           |                  |         |        |                   |           |         | Da      | aily assess | sment hourly      | y concentra | tion values | S *     |        |                   |           |         |         |        |                   |
|           |                  | 1. TEST |        |                   |           |         | 2. Test |             |                   |             | :           | B. TEST |        |                   |           |         | 4. TEST |        |                   |
| Measuring | Averag<br>e      | Min     | Max    | 98%<br>percentile | Measuring | Average | Min     | Max         | 98%<br>percentile | Measuring   | Average     | Min     | Max    | 98%<br>percentile | Measuring | Average | Min     | Max    | 98%<br>percentile |
| penou     |                  |         | µg/m³  |                   | period    |         |         | µg/m³       |                   | period      |             | μg      | /m³    |                   | penou     |         | Ļ       | ıg/m³  |                   |
| Febr.24   | 446,9            | 178,0   | 996,0  | 957,8             | May 23    | 204,3   | 77,0    | 506,0       | 454,0             | Sept.13     | 202,5       | 118,0   | 390,0  | 389,1             | Dec.13    | 557,7   | 211,0   | 1463,0 | 1355,4            |
| Febr.25   | 346,3            | 151,0   | 588,0  | 586,6             | May 24    | 304,0   | 135,0   | 800,0       | 733,3             | Sept.14     | 191,7       | 118,0   | 435,0  | 391,8             | Dec.14    | 614,2   | 343,0   | 874,0  | 832,6             |
| Febr.26   | 162,3            | 87,0    | 374,0  | 372,2             | May 25    | 211,2   | 92,0    | 414,0       | 412,2             | Sept.15     | 298,3       | 124,0   | 1015,0 | 945,5             | Dec.15    | 609,7   | 327,0   | 803,0  | 799,8             |
| Febr.27   | 131,5            | 51,0    | 243,0  | 218,2             | May 26    | 287,6   | 93,0    | 574,0       | 561,6             | Sept.16     | 257,3       | 123,0   | 495,0  | 478,4             | Dec.16    | 478,1   | 324,0   | 630,0  | 624,9             |
| Febr.28   | 304,0            | 194,0   | 646,0  | 588,5             | May 27    | 280,5   | 78,0    | 475,0       | 473,6             | Sept.17     | 273,3       | 121,0   | 523,0  | 499,5             | Dec.17    | 426,0   | 147,0   | 889,0  | 837,9             |
| Febr.29   | 322,9            | 93,0    | 736,0  | 669,6             | May 30    | 253,9   | 78,0    | 677,0       | 656,3             | Sept.18     | 322,4       | 168,0   | 528,0  | 524,3             | Dec.18    | 568,2   | 241,0   | 959,0  | 938,8             |
| March01   | 403,2            | 94,0    | 956,0  | 918,0             | May 31    | 248,9   | 73,0    | 565,0       | 508,0             | Sept.19     | 267,3       | 120,0   | 576,0  | 514,4             | Dec.19    | 397,1   | 125,0   | 610,0  | 594,2             |
| March02   | 279,1            | 125,0   | 639,0  | 586,6             | June 01   | 241,7   | 78,0    | 499,0       | 466,0             | Sept.20     | 259,1       | 124,0   | 581,0  | 547,1             | Dec.20    | 598,7   | 216,0   | 1153,0 | 1142,0            |
| March03   | 322,9            | 118,0   | 963,0  | 920,7             | June 02   | 341,8   | 91,0    | 1147,0      | 1059,1            | Sept.21     | 456,1       | 169,0   | 856,0  | 785,6             | Dec.21    | 580,4   | 296,0   | 892,0  | 871,3             |
| March04   | 386,9            | 219,0   | 956,0  | 935,8             | June 03   | 265,8   | 92,0    | 604,0       | 534,5             | Sept.22     | 404,5       | 138,0   | 1161,0 | 1029,9            | Dec.22    | 453,7   | 232,0   | 735,0  | 719,4             |
| March05   | 379,3            | 149,0   | 1140,0 | 955,1             | June 04   | 235,4   | 109,0   | 495,0       | 478,4             | Sept.23     | 316,7       | 122,0   | 842,0  | 804,3             | Dec.23    | 457,6   | 219,0   | 711,0  | 679,3             |
| March06   | 651,8            | 212,0   | 1861,0 | 1760,7            | June 05   | 155,6   | 98,0    | 276,0       | 256,7             | Sept.24     | 401,0       | 156,0   | 632,0  | 629,7             | Dec.24    | 694,1   | 479,0   | 1020,0 | 990,1             |
| March07   | 448,0            | 168,0   | 1513,0 | 1364,9            | June 06   | 197,6   | 82,0    | 775,0       | 713,8             | Sept.25     | 283,5       | 138,0   | 631,0  | 609,4             | Dec.25    | 559,0   | 383,0   | 852,0  | 848,8             |
| March08   | 610,8            | 147,0   | 1572,0 | 1302,9            | June 07   | 283,5   | 104,0   | 989,0       | 918,6             | Sept.26     | 382,2       | 147,0   | 955,0  | 788,5             | Dec.26    | 572,1   | 295,0   | 958,0  | 915,2             |
| Average   | 371              | 142     | 942    | 867               |           | 251     | 91      | 628         | 588               |             | 308         | 135     | 687    | 638               |           | 540     | 274     | 896    | 868               |

Comment:

\* Daily 8-hour moving average concentrations maximum. The maximum value shall be selected among the 8-hour moving average values calculated on the basis of the hourly averages. The 8-hour average values that were so calculated shall refer to those days, on which the 8-hour period ends, thus the first test period of any day will last from 17 hours of the previous day until 01 hour of the given day. The last test on any day will last from 16 to 24 hours within the given day.

The measurement was suspended on February 29 between 11.00 – 12.00 hours due to calibration on March 1 between 6.00-8.00 hour due to voltage volatility.

The measurement was suspended between May 28. 00.00 hour and May 29. 24.00 hours, and on June 1 between 10.00 - 11.00 hours due to power outage.

The measurement was suspended on August 20. between 10.00 – 11.00 hours due to calibration.

Table 16.2.2-19: 2. LMp on-the-spot measurements/tests - CO

## The following figures present the hourly CO concentration values:





Figure 16.2.2-21: 2. LMp - CO hourly run-off curves along the north access road

| CC<br>Based on I                                | CO concentration<br>Based on hourly measurement values<br>(µg/m <sup>3</sup> ) |     |      |                |  |  |  |  |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------|-----|------|----------------|--|--|--|--|--|--|--|--|
|                                                 | Average                                                                        | Min | Max  | 98% percentile |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 02. 24-03.08.)            | 563                                                                            | 170 | 1112 | 1024           |  |  |  |  |  |  |  |  |
| <b>2. TEST</b> (2012. 05. 23-06.07.)            | 356                                                                            | 198 | 443  | 441            |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012.09.13-26.)                 | 446                                                                            | 280 | 708  | 677            |  |  |  |  |  |  |  |  |
| <b>4. TEST</b> (2012.12.13-26.) 733 550 895 894 |                                                                                |     |      |                |  |  |  |  |  |  |  |  |

Table 16.2.2-20: 2. LMp CO measurements/tests results



koncentráció - concentration, Északi bekötőút mellett - along the north access road, 24 órás határérték - 24-hour limit, mérés - measurement/test Figure 16.2.2-22: 2. LMp – CO daily average concentration along the north access road

The measured hourly CO immission values were always well below the 10 000 µg/m<sup>3</sup> hourly limit.

The highest concentration value was measured during the 1st measurement period on March 6 between 7.00-8.00 a.m., the value was 1861  $\mu$ g/m<sup>3</sup>, representing 19% of the hourly limit.

The maximum value of the 8-hour moving average values was lower than 20% of the 24-hour limit (5 000 µg/m<sup>3</sup>).

Bi-weekly average values of the CO measurements/tests were: 563 µg/m<sup>3</sup>, 356 µg/m<sup>3</sup>, 446 µg/m<sup>3</sup>, 733 µg/m<sup>3</sup>.

The CO measurement results were slightly higher during winter, and their volatility was in line with the heating-non-heating season.

### PM<sub>10</sub>, TSPM 24-hour concentration

| Measuring | <b>PM</b> 10 | TSPM           | Measuring | <b>PM</b> 10 | TSPM | Measuring | <b>PM</b> 10 | TSPM | Measuring | <b>PM</b> 10 | TSPM |
|-----------|--------------|----------------|-----------|--------------|------|-----------|--------------|------|-----------|--------------|------|
| period    | µg/n         | n <sup>3</sup> | period    | μg           | /m³  | period    | μg           | /m³  | period    | μg           | /m³  |
| Febr.24   | 22           | 26             | May 23    | 18           | 21   | Sept.13   | 5            | 8    | Dec.13    | 34           | 41   |
| Febr.25   | 9            | 11             | May 24    | 23           | 30   | Sept.14   | 14           | 16   | Dec.14    | 47           | 55   |
| Febr.26   | 10           | 13             | May 25    | 20           | 30   | Sept.15   | 14           | 18   | Dec.15    | 32           | 34   |
| Febr.27   | 9            | 11             | May 26    | 23           | 35   | Sept.16   | 13           | 17   | Dec.16    | 23           | 24   |
| Febr.28   | 20           | 23             | May 27    | 18           | 26   | Sept.17   | 24           | 39   | Dec.17    | 31           | 33   |
| Febr.29   | 8            | 9              | May 30    | 16           | 24   | Sept.18   | 31           | 52   | Dec.18    | 29           | 29   |
| March 01  | 21           | 26             | May 31    | 17           | 29   | Sept.19   | 31           | 49   | Dec.19    | 28           | 28   |
| March 02  | 26           | 28             | June 01   | 15           | 22   | Sept.20   | 9            | 12   | Dec.20    | 34           | 37   |
| March 03  | 19           | 19             | June 02   | 10           | 13   | Sept.21   | 16           | 22   | Dec.21    | 38           | 38   |
| March 04  | 21           | 24             | June 03   | 18           | 25   | Sept.22   | 16           | 24   | Dec.22    | 26           | 28   |
| March 05  | 26           | 30             | June 04   | 16           | 25   | Sept.23   | 17           | 21   | Dec.23    | 41           | 44   |
| March 06  | 36           | 44             | June 05   | 8            | 14   | Sept.24   | 31           | 47   | Dec.24    | 55           | 57   |
| March 07  | 23           | 27             | June 06   | 11           | 19   | Sept.25   | 11           | 17   | Dec.25    | 28           | 30   |
| March 08  | 45           | 52             | June 07   | 15           | 22   | Sept.26   | 25           | 36   | Dec.26    | 17           | 17   |
| min       | 8            | 9              |           | 8            | 13   |           | 5            | 8    |           | 17           | 17   |
| max       | 45           | 52             |           | 23           | 35   |           | 31           | 52   |           | 55           | 57   |
| Average   | 21           | 25             |           | 16           | 24   |           | 18           | 27   |           | 33           | 35   |

Table 16.2.2-21: 2. LMp on-the-spot measurements/tests – PM<sub>10</sub>, TSPM

## The following figures present the PM<sub>10</sub> and a TSPM daily concentration values:



koncentráció - concentration, Északi bekötőút mellett - along the north access road, mérési időszak - measurement period, dátum - date, határérték - limit

Figure 16.2.2-23: 2. LMp - PM<sub>10</sub> and a TSPM daily run-off curves along the north access road

 $PM_{10}$  24-hour average and maximum values during the <u>1st</u>, <u>2nd</u> and <u>3rd</u> measuring periods did not exceed the limit. During the <u>4th</u> measuring period the PM<sub>10</sub> 24-hour average value measured on December 24 was higher than the limit, as this value was 55 µg/m<sup>3</sup>.

Decree 4/2011. (I. 14.) VM defines no limit for the **TSPM**. The formerly valid Decree 14/2001.(V.9.) KöM-EüM-FVM defined for the TSPM 200  $\mu$ g/m<sup>3</sup> hourly, 100  $\mu$ g/m<sup>3</sup> 24-hour, and 50  $\mu$ g/m<sup>3</sup> annual limit, and the measurement results did not exceed such limit values.

## Settling dust

| Settling dust concentration |            |                         |  |  |  |  |  |  |  |  |  |
|-----------------------------|------------|-------------------------|--|--|--|--|--|--|--|--|--|
| First days                  | Last days  | g/m <sup>2</sup> x30nap |  |  |  |  |  |  |  |  |  |
| 2012.01.23                  | 2012.02.23 | 1,2                     |  |  |  |  |  |  |  |  |  |
| 2012.02.23                  | 2012.03.28 | 1,6                     |  |  |  |  |  |  |  |  |  |
| 2012.03.28                  | 2012.04.26 | 2,2                     |  |  |  |  |  |  |  |  |  |
| 2012.04.26                  | 2012.05.22 | 2,6                     |  |  |  |  |  |  |  |  |  |
| 2012.05.22                  | 2012.06.25 | 3,7                     |  |  |  |  |  |  |  |  |  |
| 2012.06.25                  | 2012.07.31 | 2,3                     |  |  |  |  |  |  |  |  |  |
| 2012.07.31                  | 2012.08.30 | 1,6                     |  |  |  |  |  |  |  |  |  |
| 2012.09.11                  | 2012.10.12 | 3,7                     |  |  |  |  |  |  |  |  |  |
| 2012.10.12                  | 2012.11.12 | 0,9                     |  |  |  |  |  |  |  |  |  |
| 2012.11.12                  | 2012.12.12 | 0,8                     |  |  |  |  |  |  |  |  |  |
| 2012.12.12                  | 2013.01.11 | 0,8                     |  |  |  |  |  |  |  |  |  |
| 2013.01.11                  | 2013.02.12 | 1,6                     |  |  |  |  |  |  |  |  |  |
| 2013.02.25                  | 2013.03.29 | 1,3                     |  |  |  |  |  |  |  |  |  |

Table 16.2.2-22: 2. LMp on-the-spot measurements/tests - settling dust

Decree 4/2011. (I. 14.) VM defines no limit for **Settling dust** either. The annulled Decree 14/2001.(V.9.) KöM-EüM-FVM defines 16 g/m<sup>2</sup>x 30 days and 120 t/km<sup>2</sup> x year limit. Based on the above referred measurement results we can state that settling dust measurement results remained below the 30-day limit, and the highest value was only 23% of the limit.

## 16.2.2.5.3 Paks, Southern access road, Meteorological Station - 3. LMp



mérés - measurements/tests source : Google Earth Figure 16.2.2-24: 3. LMp location



1. TEST



2. TEST









4. Test

SETTLING DUST SAMPLING UNITS

Figure 16.2.2-25: Location of testing truck and settling dust sampling units at 3 LMp site

### NO<sub>2</sub> immission

|           | NO <sub>2</sub> concentration                         |        |       |                   |           |              |        |      |                   |                   |              |        |     |                   |               |         |                 |     |                   |
|-----------|-------------------------------------------------------|--------|-------|-------------------|-----------|--------------|--------|------|-------------------|-------------------|--------------|--------|-----|-------------------|---------------|---------|-----------------|-----|-------------------|
|           | Based on daily assessment hourly concentration values |        |       |                   |           |              |        |      |                   |                   |              |        |     |                   |               |         |                 |     |                   |
|           | 1                                                     | . Test |       |                   |           | 2            | . TEST |      |                   |                   | 3            | . Test |     |                   | 4. TEST       |         |                 |     |                   |
| Measuring | Aver-<br>age                                          | Min    | Max   | 98%<br>percentile | Measuring | Aver-<br>age | Min    | Max  | 98%<br>percentile | Measuring         | Aver-<br>age | Min    | Max | 98%<br>percentile | Measuri<br>ng | Average | Min             | Max | 98%<br>percentile |
| penou     |                                                       | μ      | ıg/m³ |                   | penou     |              | μ      | g/m³ | T                 | μg/m <sup>3</sup> |              |        | 1   | period            |               | μg      | /m <sup>3</sup> |     |                   |
| Febr.09   | 39                                                    | 20     | 65    | 65                | May 08    | 14           | 9      | 21   | 21                | Aug.16            | 30           | 17     | 75  | 65                | Nov.28        | 32      | 14              | 85  | 66                |
| Febr.10   | 61                                                    | 34     | 117   | 108               | May 09    | 23           | 11     | 74   | 72                | Aug.17            | 29           | 17     | 46  | 45                | Nov.29        | 17      | 11              | 58  | 45                |
| Febr.11   | 27                                                    | 18     | 54    | 52                | May 10    | 24           | 12     | 65   | 61                | Aug.18            | 24           | 21     | 32  | 31                | Nov.30        | 20      | 15              | 36  | 35                |
| Febr.12   | 31                                                    | 19     | 50    | 47                | May 11    | 24           | 11     | 77   | 67                | Aug.19            | 24           | 19     | 33  | 33                | Dec.01        | 23      | 15              | 42  | 41                |
| Febr.13   | 40                                                    | 25     | 63    | 62                | May 12    | 17           | 8      | 42   | 37                | Aug.20            | 23           | 16     | 37  | 33                | Dec.02        | 21      | 13              | 37  | 34                |
| Febr.14   | 43                                                    | 22     | 171   | 138               | May 13    | 9            | 6      | 15   | 15                | Aug.21            | 31           | 19     | 98  | 86                | Dec.03        | 17      | 13              | 25  | 24                |
| Febr.15   | 20                                                    | 14     | 25    | 24                | May 14    | 14           | 7      | 37   | 33                | Aug.22            | 30           | 18     | 70  | 63                | Dec.04        | 15      | 11              | 23  | 22                |
| Febr.16   | 17                                                    | 11     | 25    | 24                | May 15    | 19           | 7      | 39   | 38                | Aug.23            | 36           | 19     | 51  | 51                | Dec.05        | 29      | 13              | 52  | 50                |
| Febr.17   | 16                                                    | 11     | 20    | 19                | May 16    | 13           | 11     | 19   | 19                | Aug.24            | 38           | 16     | 118 | 100               | Dec.06        | 39      | 15              | 146 | 130               |
| Febr.18   | 24                                                    | 16     | 50    | 47                | May 17    | 10           | 7      | 15   | 15                | Aug.25            | 23           | 16     | 40  | 36                | Dec.07        | 21      | 11              | 88  | 77                |
| Febr.19   | 28                                                    | 18     | 69    | 62                | May 18    | 14           | 7      | 32   | 31                | Aug.26            | 19           | 11     | 48  | 40                | Dec.08        | 16      | 11              | 23  | 22                |
| Febr.20   | 34                                                    | 15     | 65    | 61                | May 19    | 16           | 9      | 32   | 29                | Aug.27            | 17           | 12     | 25  | 23                | Dec.09        | 20      | 13              | 28  | 27                |
| Febr.21   | 36                                                    | 15     | 94    | 94                | May 20    | 14           | 8      | 26   | 25                | Aug.28            | 26           | 14     | 111 | 93                | Dec.10        | 20      | 14              | 43  | 36                |
| Febr.22   | 33                                                    | 19     | 64    | 60                | May 21    | 17           | 9      | 71   | 65                | Aug.29            | 32           | 19     | 93  | 84                | Dec.11        | 36      | 18              | 75  | 66                |
| Average   | 32                                                    | 18     | 67    | 62                |           | 16           | 9      | 40   | 38                |                   | 27           | 17     | 63  | 56                |               | 23      | 13              | 54  | 48                |

Comment:

The measurement was suspended on February 16 between 11.00 – 12.00 hours due to calibration.

The measurement was suspended on May 15 09.00 - 10.00 hour due to calibration.

The measurement was suspended on August 23 between 10.00 – 11.00 hours due to calibration. The measurement was suspended on November 28 between 16.00-17.00 hours due to maintenance, and on December 4 between 10.00-11.00 hour due to calibration.

Table 16.2.2-23: 3. LMp on-the-spot measurements/tests – NO<sub>2</sub>

## The following figures present the hourly NO<sub>2</sub> concentration values:



koncentráció - concentration, Meteorológiai állomás - meterorogical station, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-26: 3. LMp - NO2 hourly run-off curves at 3 LMp meterorogical station

| NO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m <sup>3</sup> ) |         |     |     |                |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|---------|-----|-----|----------------|--|--|--|--|--|--|--|
|                                                                                             | Average | Min | Max | 98% percentile |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 02. 09-02.22.)                                                        | 32      | 18  | 67  | 62             |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 05. 08-21.)                                                           | 16      | 9   | 40  | 38             |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012. 08. 16-29.)                                                           | 27      | 17  | 63  | 56             |  |  |  |  |  |  |  |
| <b>4. TEST</b> (2012. 11. 28-12.11.) 23 13 54 48                                            |         |     |     |                |  |  |  |  |  |  |  |

Table 16.2.2-24: 3. LMp NO<sub>2</sub> measurements/tests results



koncentráció - concentration, Meteorológiai Állomás - meteorological station, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-27: 3. LMp - NO<sub>2</sub> daily average concentration at 3 LMp meteorological station

Among the measured NO<sub>2</sub> hourly values the 6-hourl figure was higher than the 100  $\mu$ g/m<sup>3</sup> hourly limit, for 2-2-2 hours during the 1st, the 3rd and the 4th measuring periods alike.

The measured NO<sub>2</sub> hourly run-off curves can well characterise the daily volatility. NO<sub>2</sub> concentration significantly increased in the morning between 04.00-09.00 hours, and values higher than the limit were measured during this period. Concentration slightly increased also in the afternoon between 13.00-17.00 hours, and in the evening between 20.00-24.00 hours.

The hourly Value exceeding limits were 11-71% higher than the limit.

The highest hourly NO<sub>2</sub> value was measured during the 1st measuring period on February 14, 2012 between 07.00-08.00 a.m., it was 171  $\mu$ g/m<sup>3</sup>.

Bi-weekly average values of the NO<sub>2</sub> measurements/tests 2-week average values: 32 µg/m<sup>3</sup>, 16 µg/m<sup>3</sup>, 27 µg/m<sup>3</sup>, 23 µg/m<sup>3</sup>.

The volatility in  $NO_2$  measurement results reflected the heating-non-heating seasons. Increasing hourly measurement results reflect the impacts of traffic along the Nuclear Plant southern access road, in connection with higher traffic when workers commuted to work and left home after the shift.
# NO<sub>x</sub> immission

|           | NO <sub>x</sub> concentration<br>Based on daily assessment hourly concentration values |        |       |       |        |      |                   |           |              |                 |             |                   |           |             |        |      |                   |       |       |
|-----------|----------------------------------------------------------------------------------------|--------|-------|-------|--------|------|-------------------|-----------|--------------|-----------------|-------------|-------------------|-----------|-------------|--------|------|-------------------|-------|-------|
|           |                                                                                        |        |       |       |        |      | Base              | d on dail | y assessmei  | nt hourly conce | entration v | alues             |           |             |        |      |                   |       |       |
|           | 1                                                                                      | . Test |       |       |        | 2    | 2. Test           |           |              |                 | 3           | . Test            |           |             |        | 4    | . TEST            |       |       |
| Measuring | leasuring period Min Max 98% percentile period Max 98% percentile period Max 98%       |        |       |       |        |      | 98%<br>percentile | Measuring | Aver-<br>age | Min             | Max         | 98%<br>percentile | Measuring | Avera<br>ge | Min    | Max  | 98%<br>percentile |       |       |
| penou     |                                                                                        | μ      | g/m³  | T     | penou  |      | 4                 | ıg/m³     |              | penod           |             | μ                 | g/m³      |             | period |      | μ                 | g/m³  |       |
| Febr.09   | 43,7                                                                                   | 23,8   | 87,0  | 78,4  | May 08 | 16,7 | 11,7              | 25,9      | 24,8         | Aug.16          | 34,5        | 17,2              | 104,9     | 88,8        | Nov.28 | 45,8 | 19,4              | 134,1 | 100,7 |
| Febr.10   | 70,0                                                                                   | 37,1   | 162,6 | 144,0 | May 09 | 29,5 | 13,0              | 126,6     | 119,7        | Aug.17          | 33,1        | 17,1              | 59,3      | 55,6        | Nov.29 | 23,0 | 14,9              | 86,4  | 64,9  |
| Febr.11   | 30,8                                                                                   | 20,7   | 57,7  | 55,3  | May 10 | 30,6 | 13,3              | 112,6     | 99,8         | Aug.18          | 26,7        | 21,8              | 39,9      | 37,9        | Nov.30 | 28,9 | 19,1              | 59,2  | 56,1  |
| Febr.12   | 34,2                                                                                   | 22,3   | 61,4  | 54,0  | May 11 | 29,1 | 12,7              | 113,9     | 99,8         | Aug.19          | 28,1        | 19,4              | 46,9      | 46,6        | Dec.01 | 32,8 | 19,1              | 64,7  | 63,0  |
| Febr.13   | 45,1                                                                                   | 28,4   | 78,9  | 78,7  | May 12 | 20,3 | 10,5              | 59,9      | 48,2         | Aug.20          | 27,0        | 18,2              | 49,8      | 44,0        | Dec.02 | 28,5 | 17,5              | 58,6  | 52,1  |
| Febr.14   | 56,3                                                                                   | 25,1   | 276,0 | 216,9 | May 13 | 11,6 | 8,9               | 18,9      | 18,0         | Aug.21          | 40,4        | 21,1              | 163,9     | 138,6       | Dec.03 | 23,2 | 17,4              | 35,2  | 34,9  |
| Febr.15   | 22,8                                                                                   | 16,2   | 28,0  | 27,3  | May 14 | 18,8 | 9,6               | 52,7      | 45,8         | Aug.22          | 36,7        | 19,2              | 102,5     | 89,2        | Dec.04 | 19,9 | 14,8              | 30,8  | 30,1  |
| Febr.16   | 19,8                                                                                   | 13,0   | 29,9  | 29,8  | May 15 | 23,9 | 10,0              | 53,4      | 53,3         | Aug.23          | 44,6        | 21,2              | 68,4      | 67,8        | Dec.05 | 39,9 | 17,2              | 82,2  | 74,4  |
| Febr.17   | 18,1                                                                                   | 13,2   | 21,8  | 21,5  | May 16 | 15,8 | 13,1              | 22,6      | 21,9         | Aug.24          | 54,2        | 15,8              | 210,3     | 176,4       | Dec.06 | 59,3 | 19,6              | 256,4 | 230,6 |
| Febr.18   | 26,7                                                                                   | 18,3   | 52,4  | 49,6  | May 17 | 13,2 | 10,3              | 19,2      | 19,0         | Aug.25          | 25,5        | 16,3              | 50,0      | 42,2        | Dec.07 | 29,7 | 15,3              | 145,5 | 123,8 |
| Febr.19   | 31,0                                                                                   | 20,3   | 83,2  | 73,4  | May 18 | 17,1 | 10,2              | 41,1      | 37,5         | Aug.26          | 22,0        | 11,5              | 67,2      | 55,4        | Dec.08 | 21,3 | 15,7              | 28,0  | 27,8  |
| Febr.20   | 42,2                                                                                   | 17,3   | 100,4 | 90,6  | May 19 | 19,4 | 10,6              | 35,7      | 34,8         | Aug.27          | 19,2        | 11,6              | 32,8      | 30,6        | Dec.09 | 24,9 | 17,6              | 37,4  | 34,6  |
| Febr.21   | 46,0                                                                                   | 17,4   | 143,3 | 142,7 | May 20 | 16,5 | 10,2              | 34,4      | 32,4         | Aug.28          | 32,4        | 14,3              | 175,3     | 145,0       | Dec.10 | 26,1 | 18,8              | 62,1  | 49,9  |
| Febr.22   | 38,4                                                                                   | 21,6   | 92,1  | 82,7  | May 21 | 22,4 | 11,4              | 117,2     | 107,3        | Aug.29          | 39,8        | 20,0              | 151,2     | 135,8       | Dec.11 | 45,6 | 22,5              | 108,5 | 92,4  |
| Average   | 37                                                                                     | 21     | 91    | 82    |        | 20   | 11                | 60        | 54           |                 | 33          | 17                | 94        | 82          |        | 32   | 18                | 85    | 74    |

Comment:

The measurement was suspended on February 16 between 11.00 – 12.00 hours due to calibration.

The measurement was suspended on May 15 09.00 - 10.00 hour due to calibration.

The measurement was suspended on August 23 between 10.00 – 11.00 hours due to calibration. The measurement was suspended on November 28 between 16.00-17.00 hours due to maintenance, and on December 4 10.00-11.00 hour due to calibration.

Table 16.2.2-25: 3. LMp on-the-spot measurements/tests – NOx





koncentráció - concentration, Meteorológiai állomás - meterorogical station, mérési időszak - measurement period, óra - hour

Figure 16.2.2-28: 3. LMp - NO<sub>x</sub> hourly run-off curves at 3 LMp meteorological station

| NO <sub>x</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------|----|----|----|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                                 |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 02. 09-02.22.)                                           | <b>1. TEST</b> (2012. 02. 09-02.22.) 37 21 91 82 |    |    |    |  |  |  |  |  |  |  |  |  |
| <b>2. TEST</b> (2012. 05. 08-21.)                                              | 20                                               | 11 | 60 | 54 |  |  |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012. 08. 16-29.) 33 17 94 82                                  |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012. 11. 28-12. 11.) 32 18 85 74                              |                                                  |    |    |    |  |  |  |  |  |  |  |  |  |

Table 16.2.2-26: 3. LMp NO<sub>x</sub> measurements/tests results



koncentráció - concentration, Meteorológiai Állomás - meteorological station, nincs határérték - no limit, mérés - measurement/test

Figure 16.2.2-29: 3. LMp - NOx daily average concentration at 3 LMp meteorological station

The presently effective Decree 4/2011. (I. 14.) VM defined no immission limit to  $NO_x$ .

The former Decree defined for the NO<sub>x</sub> 200  $\mu$ g/m<sup>3</sup> hourly, 150  $\mu$ g/m<sup>3</sup> 24-hour, and 70  $\mu$ g/m<sup>3</sup> annual limit. Thus the hourly values were higher than the limit once-once during the 1st and 3<sup>rd</sup> measuring periods, and twice during the 4th measuring period. The hourly values were 5-38 % higher than the permitted limit.

The highest hourly NO<sub>x</sub> value measured during the 1st measuring period on February 14, 2012 between 07.00-08.00 a.m., and it was 276  $\mu$ g/m<sup>3</sup>.

The 24-hour limit was never exceeded during any measurement period.

The hourly run-off curves can well describe the daily volatilities.  $NO_x$  concentration increased in the morning between 04.00-09.00 hours, in the afternoon between 13.00-17.00 hours and in the evening between 20.00-24.hours. The  $NO_x$  hourly and daily values showed a run-off profile similar to  $NO_2$ .

Bi-weekly average values of the NO<sub>x</sub> measurements/tests were: 37 µg/m<sup>3</sup>, 20 µg/m<sup>3</sup>, 33 µg/m<sup>3</sup>, 32 µg/m<sup>3</sup>.

Volatility in  $NO_x$  measurement results reflected the heating-non-heating seasons, the measurement results present the impacts of the Nuclear Plant southern access road traffic, similarly to the  $NO_2$  measurement results.

# SO₂ immission

|           | SO <sub>2</sub> concentration<br>Based on daily assessment hourly concentration values |         |       |                   |           |             |        |           |                   |                |              |      |                   |                   |           |             |      |      |                   |
|-----------|----------------------------------------------------------------------------------------|---------|-------|-------------------|-----------|-------------|--------|-----------|-------------------|----------------|--------------|------|-------------------|-------------------|-----------|-------------|------|------|-------------------|
|           |                                                                                        |         |       |                   |           |             | Based  | l on dail | / assessmen       | t hourly conce | entration va | lues |                   |                   |           |             |      |      |                   |
|           |                                                                                        | 1. Test |       |                   |           | 2           | . TEST |           |                   |                | 3.           | TEST |                   |                   |           | 4.          | TEST |      |                   |
| Measuring | Avera<br>ge                                                                            | Min     | Max   | 98%<br>percentile | Measuring | Aver<br>age | Min    | Max       | 98%<br>percentile | Measuring      | Average      | Min  | Max               | 98%<br>percentile | Measuring | Averag<br>e | Min  | Max  | 98%<br>percentile |
| period    |                                                                                        |         | µg/m³ |                   | penod     |             |        | ug/m³     | r                 | period         |              | μ    | ıg/m <sup>3</sup> |                   | penou     |             | μί   | g/m³ |                   |
| Febr.09   | 1,9                                                                                    | 1,0     | 2,7   | 2,6               | May 08    | 0,8         | 0,7    | 1,2       | 1,2               | Aug.16         | 0,6          | 0,5  | 1,1               | 1,0               | Nov.28    | 2,0         | 1,4  | 3,1  | 2,9               |
| Febr.10   | 2,5                                                                                    | 1,6     | 2,9   | 2,9               | May 09    | 0,9         | 0,7    | 1,8       | 1,8               | Aug.17         | 0,6          | 0,5  | 0,9               | 0,9               | Nov.29    | 1,9         | 1,6  | 2,6  | 2,6               |
| Febr.11   | 1,2                                                                                    | 0,7     | 2,7   | 2,6               | May 10    | 0,9         | 0,7    | 1,9       | 1,8               | Aug.18         | 0,7          | 0,5  | 1,1               | 1,1               | Nov.30    | 1,9         | 1,7  | 2,1  | 2,1               |
| Febr.12   | 1,8                                                                                    | 1,3     | 2,1   | 2,1               | May 11    | 0,8         | 0,7    | 1,3       | 1,3               | Aug.19         | 0,5          | 0,5  | 0,7               | 0,7               | Dec.01    | 1,9         | 1,6  | 2,3  | 2,3               |
| Febr.13   | 1,9                                                                                    | 1,5     | 2,2   | 2,2               | May 12    | 0,7         | 0,7    | 1,0       | 1,0               | Aug.20         | 0,6          | 0,5  | 0,9               | 0,9               | Dec.02    | 2,0         | 1,8  | 2,2  | 2,2               |
| Febr.14   | 1,3                                                                                    | 0,7     | 1,7   | 1,7               | May 13    | 1,6         | 0,8    | 2,5       | 2,5               | Aug.21         | 0,7          | 0,5  | 1,4               | 1,4               | Dec.03    | 1,9         | 1,6  | 2,0  | 2,0               |
| Febr.15   | 1,0                                                                                    | 0,7     | 1,6   | 1,6               | May 14    | 1,5         | 1,0    | 1,9       | 1,9               | Aug.22         | 0,6          | 0,5  | 1,0               | 1,0               | Dec.04    | 2,0         | 1,8  | 2,4  | 2,3               |
| Febr.16   | 1,1                                                                                    | 0,7     | 1,5   | 1,5               | May 15    | 0,7         | 0,7    | 1,3       | 1,2               | Aug.23         | 0,6          | 0,5  | 1,0               | 1,0               | Dec.05    | 2,0         | 1,6  | 2,3  | 2,3               |
| Febr.17   | 1,1                                                                                    | 0,7     | 1,6   | 1,6               | May 16    | 1,3         | 0,9    | 1,7       | 1,7               | Aug.24         | 0,5          | 0,5  | 0,7               | 0,7               | Dec.06    | 2,1         | 1,6  | 2,4  | 2,4               |
| Febr.18   | 0,7                                                                                    | 0,7     | 0,9   | 0,9               | May 17    | 1,4         | 0,7    | 2,1       | 2,1               | Aug.25         | 0,6          | 0,5  | 0,9               | 0,9               | Dec.07    | 2,2         | 1,8  | 2,7  | 2,7               |
| Febr.19   | 1,7                                                                                    | 1,1     | 2,2   | 2,2               | May 18    | 1,1         | 0,7    | 1,7       | 1,7               | Aug.26         | 0,9          | 0,5  | 1,6               | 1,6               | Dec.08    | 2,4         | 2,0  | 2,9  | 2,8               |
| Febr.20   | 1,4                                                                                    | 1,1     | 1,7   | 1,7               | May 19    | 1,0         | 0,7    | 1,6       | 1,6               | Aug.27         | 0,5          | 0,5  | 0,9               | 0,9               | Dec.09    | 2,7         | 1,7  | 3,8  | 3,8               |
| Febr.21   | 1,6                                                                                    | 1,2     | 2,1   | 2,1               | May 20    | 1,0         | 0,7    | 2,3       | 2,2               | Aug.28         | 0,7          | 0,5  | 1,4               | 1,4               | Dec.10    | 2,3         | 1,6  | 3,5  | 3,4               |
| Febr.22   | 1,2                                                                                    | 0,7     | 1,9   | 1,9               | May 21    | 0,9         | 0,7    | 1,6       | 1,6               | Aug.29         | 0,6          | 0,5  | 1,1               | 1,1               | Dec.11    | 2,7         | 2,0  | 3,1  | 3,1               |
| Average   | 1                                                                                      | 1       | 2     | 2                 |           | 1           | 1      | 2         | 2                 |                | 1            | 1    | 1                 | 1                 |           | 2           | 2    | 3    | 3                 |

#### Comment:

The measurement was suspended on February 16 between 11.00 – 12.00 a.m. due to calibration.

The measurement was suspended on May 15 between 09.00 – 10.00 a.m. due to calibration.

The measurement was suspended on August 23 between 10.00 – 11.00 hours due to calibration. The measurement was suspended on November 28 between 16.00-17.00 hour due to maintenance, and on December 4, between 10.00-11.00 a.m. due to calibration.

Table 16.2.2-27: 3. LMp on-the-spot measurements/tests – SO2





koncentráció - concentration, Meteorológiai állomás - meterorogical station, mérési időszak - measurement period, óra - hour

Figure 16.2.2-30: 3. LMp - SO<sub>2</sub> hourly run-off curves at 3 LMp meteorological station

| SO<br>Based on I                             | SO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |   |   |   |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------|---|---|---|--|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile               |                                                                                |   |   |   |  |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 02. 09-02.22.) 1 1 2 2 |                                                                                |   |   |   |  |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 05. 08-21.)            | 1                                                                              | 1 | 2 | 2 |  |  |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012. 08. 16-29.)            | <b>3.</b> TEST (2012. 08. 16-29.) 1 1 1 1                                      |   |   |   |  |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012. 11. 28-12.11.) 2 2 3 3 |                                                                                |   |   |   |  |  |  |  |  |  |  |  |  |  |

| Table 16.2.2-28: 3. LMp SO <sub>2</sub> measurements/tests results |
|--------------------------------------------------------------------|
|--------------------------------------------------------------------|



koncentráció - concentration, Meteorológiai Állomás - meteorological station, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-31: 3. LMp – SO<sub>2</sub> daily average concentration at 3 LMp meteorological station

The measured hourly SO<sub>2</sub> immission values were well below the 250  $\mu$ g/m<sup>3</sup> hourly limit.

The highest hourly value was measured during the 4th measurement period on December 9 between 06.00-08.00 a.m., this value was  $3.8 \mu g/m^3$ , 25 of the hourly limit.

The 24-hour average concentration values were also well below the 125 µg/m<sup>3</sup> daily limit.

Average values of the SO<sub>2</sub> measurements/tests average values were: 1 µg/m<sup>3</sup>, 1 µg/m<sup>3</sup>, 1 µg/m<sup>3</sup>, 2 µg/m<sup>3</sup>.

#### CO immission

|           | CO concentration<br>Based on daily assessment bourly concentration values. *       |        |        |        |                   |           |         |            |             |                   |             |         |        |        |                   |       |         |        |        |
|-----------|------------------------------------------------------------------------------------|--------|--------|--------|-------------------|-----------|---------|------------|-------------|-------------------|-------------|---------|--------|--------|-------------------|-------|---------|--------|--------|
|           |                                                                                    |        |        |        |                   |           | Based   | on daily a | ssessment h | nourly conce      | entration v | alues * |        |        |                   |       |         |        |        |
|           | 1                                                                                  | . Test |        |        |                   | 2         | 2. Test |            |             |                   |             | 3. TEST |        |        |                   |       | 4. Test |        |        |
| Measuring | suring Average Min Max 98% percentile period Average Min Max 98% percentile period |        |        |        | 98%<br>percentile | Measuring | Average | Min        | Max         | 98%<br>percentile | Measuring   | Average | Min    | Max    | 98%<br>percentile |       |         |        |        |
| penou     |                                                                                    |        | µg/m³  | 1      | penda             |           |         | µg/m³      |             | period            |             |         | µg/m³  |        | penda             |       |         | µg/m³  | •      |
| Febr.09   | 654,3                                                                              | 311,0  | 1436,0 | 1345,8 | May 08            | 375,9     | 111,0   | 1185,0     | 1008,4      | Aug.16            | 262,8       | 67,0    | 529,0  | 518,0  | Nov.28            | 587,8 | 241,0   | 1063,0 | 1032,6 |
| Febr.10   | 1004,1                                                                             | 436,0  | 1638,0 | 1620,1 | May 09            | 478,0     | 128,0   | 988,0      | 965,0       | Aug.17            | 265,5       | 103,0   | 573,0  | 555,5  | Nov.29            | 216,2 | 63,0    | 548,0  | 496,9  |
| Febr.11   | 555,2                                                                              | 78,0   | 1165,0 | 1065,2 | May 10            | 373,9     | 110,0   | 1275,0     | 1181,2      | Aug.18            | 326,3       | 126,0   | 924,0  | 842,1  | Nov.30            | 337,5 | 180,0   | 464,0  | 458,5  |
| Febr.12   | 623,9                                                                              | 118,0  | 989,0  | 960,5  | May 11            | 411,0     | 88,0    | 1199,0     | 1112,5      | Aug.19            | 241,5       | 115,0   | 631,0  | 625,9  | Dec.01            | 315,0 | 78,0    | 656,0  | 617,4  |
| Febr.13   | 510,0                                                                              | 120,0  | 1123,0 | 1122,1 | May 12            | 334,5     | 125,0   | 758,0      | 722,6       | Aug.20            | 341,4       | 121,0   | 854,0  | 820,9  | Dec.02            | 326,6 | 115,0   | 823,0  | 782,1  |
| Febr.14   | 434,5                                                                              | 126,0  | 1334,0 | 1165,6 | May 13            | 361,5     | 72,0    | 1216,0     | 1167,2      | Aug.21            | 263,8       | 97,0    | 706,0  | 623,2  | Dec.03            | 261,8 | 71,0    | 613,0  | 590,9  |
| Febr.15   | 455,0                                                                              | 59,0   | 1003,0 | 961,6  | May 14            | 293,8     | 63,0    | 616,0      | 595,3       | Aug.22            | 329,0       | 109,0   | 591,0  | 578,1  | Dec.04            | 381,1 | 178,0   | 714,0  | 686,7  |
| Febr.16   | 250,0                                                                              | 108,0  | 608,0  | 559,2  | May 15            | 295,7     | 74,0    | 975,0      | 783,2       | Aug.23            | 501,2       | 277,0   | 1190,0 | 1114,8 | Dec.05            | 406,9 | 75,0    | 717,0  | 711,9  |
| Febr.17   | 353,8                                                                              | 86,0   | 681,0  | 632,7  | May 16            | 368,1     | 150,0   | 847,0      | 777,1       | Aug.24            | 445,5       | 146,0   | 810,0  | 759,9  | Dec.06            | 406,0 | 141,0   | 762,0  | 727,0  |
| Febr.18   | 365,2                                                                              | 136,0  | 1121,0 | 928,7  | May 17            | 198,5     | 58,0    | 652,0      | 516,8       | Aug.25            | 302,1       | 135,0   | 823,0  | 678,6  | Dec.07            | 402,1 | 112,0   | 870,0  | 848,8  |
| Febr.19   | 541,7                                                                              | 145,0  | 1048,0 | 1047,1 | May 18            | 283,1     | 84,0    | 698,0      | 670,4       | Aug.26            | 238,9       | 125,0   | 595,0  | 507,1  | Dec.08            | 371,8 | 124,0   | 637,0  | 631,0  |
| Febr.20   | 410,4                                                                              | 60,0   | 1039,0 | 976,0  | May 19            | 298,3     | 41,0    | 1207,0     | 1098,9      | Aug.27            | 356,0       | 136,0   | 921,0  | 862,6  | Dec.09            | 599,5 | 336,0   | 996,0  | 983,6  |
| Febr.21   | 462,1                                                                              | 52,0   | 1419,0 | 1151,7 | May 20            | 347,5     | 57,0    | 1234,0     | 1010,4      | Aug.28            | 322,8       | 138,0   | 548,0  | 542,0  | Dec.10            | 546,3 | 284,0   | 906,0  | 902,8  |
| Febr.22   | 424,4                                                                              | 63,0   | 1102,0 | 1026,6 | May 21            | 184,7     | 56,0    | 792,0      | 752,9       | Aug.29            | 346,4       | 179,0   | 579,0  | 536,7  | Dec.11            | 704,6 | 319,0   | 1112,0 | 1007,1 |
| Average   | 503                                                                                | 136    | 1122   | 1040   |                   | 329       | 87      | 974        | 883         |                   | 324         | 134     | 734    | 683    |                   | 419   | 165     | 777    | 748    |

#### Comment:

\* Maximum of daily 8-hour moving average concentrations. The maximum value shall be selected among the 8-hour moving average values calculated on the basis of the hourly averages. The 8-hour average values that were so calculated shall refer to those days, on which the 8-hour period ends, thus the first test period of any day will last from 17 hours of the previous day until 01 hour of the given day. The last test on any day will last from 16 to 24 hours within the given day.

The measurement was suspended on February 16 between 11.00 – 12.00 hours due to calibration.

The measurement was suspended on May 15 between 09.00 – 10.00 hours due to calibration. The measurement was suspended on August 23 between 10.00 – 11.00 hours due to calibration.

The measurement was suspended on November 28 between 16.00-17.00 hour due to maintenance, and on December 4 between 10.00-11.00 hours due to calibration.

Table 16.2.2-29: 3. LMp on-the-spot measurements/tests - CO

The following figures present the CO concentration hourly test values:



koncentráció - concentration, Meteorológiai állomás - meterorogical station, mérési időszak - measurement period, óra - hour

Figure 16.2.2-32: 3. LMp - CO hourly run-off curves at 3 LMp meteorological station

| CO concentration<br>Based on hourly measurement values<br>(µg/m³) |                                                        |     |     |     |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------|-----|-----|-----|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                    |                                                        |     |     |     |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 02. 09-02.22.)                              | <b>1. TEST</b> (2012. 02. 09-02.22.) 744 339 1207 1177 |     |     |     |  |  |  |  |  |  |  |  |  |
| <b>2. TEST</b> (2012. 05. 08-21.)                                 | 519                                                    | 333 | 797 | 768 |  |  |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012. 08. 16-29.) 441 280 656 633                 |                                                        |     |     |     |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012. 11. 28-12.11.) 569 351 834 811              |                                                        |     |     |     |  |  |  |  |  |  |  |  |  |

Table 16.2.2-30: 3. LMp CO measurements/tests results



koncentráció - concentration, Meteorológiai Állomás - meteorological station, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-33: 3. LMp – CO daily average concentration at 3 LMp meteorological station

The measured hourly CO immission values were always below the 10 000 µg/m<sup>3</sup> hourly limit.

The highest concentration was measured during the 1st measurement period on February 10 between 10.00-11.00 a.m., this value was 1638  $\mu$ g/m<sup>3</sup>, 16% of the hourly limit.

The maximum of the 8-hour moving average values did not reach even 20% of the 24-hour limit (5 000 µg/m<sup>3</sup>).

Bi-weekly averages of CO measurements/tests were: 744 µg/m<sup>3</sup>, 519 µg/m<sup>3</sup>, 441 µg/m<sup>3</sup>, 569 µg/m<sup>3</sup>.

# PM<sub>10</sub>, TSPM 24-hour concentration

| Measuring | <b>PM</b> 10 | TSPM | Measuring | <b>PM</b> 10 | TSPM           | Measuring | <b>PM</b> 10 | TSPM | Measuring | <b>PM</b> 10 | TSPM |
|-----------|--------------|------|-----------|--------------|----------------|-----------|--------------|------|-----------|--------------|------|
| period    | μg           | /m³  | period    | μg/          | m <sup>3</sup> | period    | μg           | /m³  | period    | μ            | ı/m³ |
| Febr.09   | 83           | 89   | May 08    | 16           | 24             | Aug.16    | 25           | 43   | Nov.28    | 41           | 42   |
| Febr.10   | 150          | 155  | May 09    | 13           | 19             | Aug.17    | 29           | 48   | Nov.29    | 12           | 14   |
| Febr.11   | 59           | 66   | May 10    | 16           | 26             | Aug.18    | 23           | 34   | Nov.30    | 7            | 9    |
| Febr.12   | 72           | 78   | May 11    | 19           | 27             | Aug.19    | 21           | 29   | Dec.01    | 12           | 13   |
| Febr.13   | 63           | 68   | May 12    | 27           | 63             | Aug.20    | 20           | 28   | Dec.02    | 22           | 22   |
| Febr.14   | 41           | 46   | May 13    | 16           | 27             | Aug.21    | 24           | 39   | Dec.03    | 15           | 17   |
| Febr.15   | 27           | 29   | May 14    | 10           | 14             | Aug.22    | 35           | 52   | Dec.04    | 14           | 15   |
| Febr.16   | 21           | 28   | May 15    | 18           | 19             | Aug.23    | 36           | 55   | Dec.05    | 18           | 19   |
| Febr.17   | 16           | 20   | May 16    | 17           | 35             | Aug.24    | 30           | 44   | Dec.06    | 23           | 26   |
| Febr.18   | 16           | 19   | May 17    | 21           | 45             | Aug.25    | 23           | 37   | Dec.07    | 14           | 15   |
| Febr.19   | 42           | 46   | May 18    | 18           | 26             | Aug.26    | 21           | 48   | Dec.08    | 23           | 41   |
| Febr.20   | 30           | 33   | May 19    | 14           | 20             | Aug.27    | 12           | 20   | Dec.09    | 24           | 27   |
| Febr.21   | 26           | 30   | May 20    | 12           | 17             | Aug.28    | 15           | 23   | Dec.10    | 40           | 41   |
| Febr.22   | 32           | 39   | May 21    | 25           | 43             | Aug.29    | 20           | 36   | Dec.11    | 69           | 73   |
| min       | 16           | 19   |           | 10           | 14             |           | 12           | 20   |           | 7            | 9    |
| max       | 150          | 155  |           | 27           | 63             |           | 36           | 55   |           | 69           | 73   |
| Average   | 48           | 53   |           | 17           | 29             |           | 24           | 38   |           | 24           | 27   |

Table 16.2.2-31: 3. LMp on-the-spot measurements/tests – PM<sub>10</sub>, TSPM



The following figures present the PM<sub>10</sub> and a TSPM daily concentration values.

koncentráció - concentration, Meteorológiai állomás - meterorogical station, mérési időszak - measurement period, dátum - date, határérték - limit

Figure 16.2.2-34: 3. LMp - PM<sub>10</sub> and a TSPM daily run-off curves at 3 LMp meteorological station

**PM**<sub>10</sub> 24-hour average values were 18-300 % higher than the limit for 5 days during the <u>1st measuring period</u> between February 9-13. Having analysed the results of the measuring point of the national measuring stations we can state that the values measured also at the nearby measuring points were also similarly higher than the limit for several days starting from February 7. In the <u>2nd and 3rd measuring periods</u> the 24-hour average and maximum PM<sub>10</sub>values were lower than the limit. The 24-hour average PM<sub>10</sub>value during the <u>4th measuring period</u> was higher than the limit on December 11, the value was 69  $\mu$ g/m<sup>3</sup>.

The presently effective Decree 4/2011.(I.14.) VM defines no limit for the **TSPM**. Thus we used the limit defined in the former Decree 14/2001.(V.9.) KöM-EüM-FVM for our measurement results. As the measurement curves can well demonstrate, the limit was exceeded only in the 1st measuring period, on February 10, 2012 among the 4 measuring periods, when the measured value was 155% of the "former" limit.

# Settling dust

| Settling du | ust concent | ration                  |
|-------------|-------------|-------------------------|
| First days  | Last days   | g/m <sup>2</sup> x30nap |
| 2012.01.23  | 2012.02.23  | 0,7                     |
| 2012.02.23  | 2012.03.28  | 1,2                     |
| 2012.03.28  | 2012.04.26  | 2                       |
| 2012.04.26  | 2012.05.22  | 4,6                     |
| 2012.05.22  | 2012.06.25  | 2,5                     |
| 2012.06.25  | 2012.07.31  | 2,0                     |
| 2012.07.31  | 2012.08.30  | 3,1                     |
| 2012.09.11  | 2012.10.12  | 2,1                     |
| 2012.10.12  | 2012.11.12  | 0,5                     |
| 2012.11.12  | 2012.12.12  | 0,7                     |
| 2012.12.12  | 2013.01.11  | 0,4                     |
| 2013.01.11  | 2013.02.12  | 1,0                     |
| 2013.02.25  | 2013.03.29  | 1,3                     |

Table 16.2.2-32: 3. LMp on-the-spot measurements/tests - settling dust

As there is no limit defined for **settling dust**, if we compare the measured values with the former limit (16 g/m<sup>2</sup> x 30 days) we can find out that these measurement results did not exceed the limit, as the highest measured value was only 29 % of the limit.

# 16.2.2.5.4 Csámpa, Kis street - 4. LMp



mérés - measurements/tests source : Google Earth Figure 16.2.2-35: 4. LMp location



1. TEST



2. TEST



**3. TEST** (measuring point re-located by 20m)



SETTLING DUST SAMPLING UNITS

Figure 16.2.2-36: Location of testing truck and settling dust sampling units at 4 LMp site



4. TEST

### NO<sub>2</sub> immission

|                     |              |      |                 |                       |                     |              |         |          | NO <sub>2</sub> con | centratio           | n            |       |                  |                   |                     |              |      |                  |                   |
|---------------------|--------------|------|-----------------|-----------------------|---------------------|--------------|---------|----------|---------------------|---------------------|--------------|-------|------------------|-------------------|---------------------|--------------|------|------------------|-------------------|
|                     |              |      |                 |                       |                     |              | Base    | ed on da | ily assessmer       | nt hourly conce     | entration va | alues |                  |                   |                     |              |      |                  |                   |
|                     | 1.           | Test |                 |                       |                     | 2            | 2. Test |          |                     |                     | 3.           | TEST  |                  |                   |                     | 4            | TEST |                  |                   |
| Measuring<br>period | Aver-<br>age | Min  | Max             | 98%<br>percentil<br>e | Measuring<br>period | Aver-<br>age | Min     | Max      | 98%<br>percentile   | Measuring<br>period | Aver-<br>age | Min   | Max              | 98%<br>percentile | Measuring<br>period | Aver-<br>age | Min  | Max              | 98%<br>percentile |
|                     |              | μg   | /m <sup>3</sup> |                       |                     |              | μ       | g/m³     |                     |                     |              | μί    | J/m <sup>3</sup> |                   |                     |              | μί   | J/m <sup>3</sup> |                   |
| March14             | 18           | 15   | 21              | 21                    | June 09             | 12           | 9       | 17       | 17                  | Sept.28             | 36           | 24    | 46               | 44                | Jan.12              | 18           | 12   | 43               | 37                |
| March15             | 18           | 14   | 28              | 28                    | June 10             | 12           | 9       | 17       | 17                  | Sept.29             | 38           | 30    | 56               | 54                | Jan.13              | 16           | 13   | 18               | 18                |
| March16             | 26           | 16   | 51              | 45                    | June 11             | 12           | 7       | 23       | 20                  | Sept.30             | 29           | 23    | 34               | 34                | Jan.14              | 22           | 14   | 39               | 37                |
| March17             | 20           | 11   | 36              | 34                    | June 12             | 14           | 7       | 33       | 29                  | Oct.01              | 34           | 22    | 50               | 50                | Jan.15              | 31           | 21   | 62               | 50                |
| March18             | 13           | 12   | 15              | 15                    | June 13             | 10           | 6       | 18       | 17                  | Oct.02              | 41           | 24    | 56               | 53                | Jan.16              | 24           | 19   | 30               | 30                |
| March19             | 15           | 12   | 24              | 22                    | June 14             | 11           | 6       | 20       | 20                  | Oct.03              | 25           | 14    | 42               | 39                | Jan.17              | 26           | 17   | 35               | 35                |
| March20             | 19           | 11   | 32              | 29                    | June 15             | 16           | 8       | 30       | 30                  | Oct.04              | 33           | 22    | 59               | 58                | Jan.18              | 26           | 19   | 31               | 30                |
| March21             | 22           | 13   | 38              | 37                    | June 16             | 17           | 8       | 34       | 33                  | Oct.05              | 26           | 19    | 38               | 36                | Jan.19              | 22           | 18   | 27               | 27                |
| March22             | 25           | 13   | 67              | 59                    | June 17             | 14           | 9       | 25       | 24                  | Oct.06              | 30           | 22    | 41               | 40                | Jan.20              | 22           | 16   | 46               | 43                |
| March23             | 25           | 16   | 57              | 48                    | June 18             | 17           | 12      | 35       | 31                  | Oct.07              | 22           | 9     | 27               | 27                | Jan.21              | 42           | 20   | 69               | 66                |
| March24             | 20           | 14   | 33              | 32                    | June 19             | 19           | 11      | 35       | 31                  | Oct.08              | 18           | 12    | 37               | 34                | Jan.22              | 28           | 19   | 48               | 44                |
| March25             | 16           | 12   | 26              | 23                    | June 20             | 21           | 12      | 41       | 37                  | Oct.09              | 30           | 15    | 72               | 65                | Jan.23              | 25           | 19   | 39               | 36                |
| March26             | 13           | 10   | 17              | 17                    | June 21             | 20           | 12      | 34       | 34                  | Oct.10              | 22           | 17    | 33               | 29                | Jan.24              | 20           | 17   | 28               | 26                |
| March27             | 14           | 9    | 21              | 20                    | June 22             | 16           | 12      | 28       | 28                  | Oct.11              | 29           | 18    | 72               | 66                | Jan.25              | 36           | 17   | 53               | 51                |
| Average             | 19           | 13   | 33              | 31                    |                     | 15           | 9       | 28       | 26                  |                     | 30           | 19    | 47               | 45                |                     | 26           | 17   | 41               | 38                |

Comment:

The measurement was suspended on March 20, 2012 between 10.00 - 11.00 hours due to calibration, and between 12.00 - 13.00 hours due to maintenance.

The measurement was suspended on June 15, 2012. between 9.00 - 10.00 hours due to calibration. The measurement was suspended on October 5, 2012 between 10.00 - 11.00 hours due to calibration.

The measurement was suspended on January 18, 2013 between 10.00-11.00 hours due to calibration.

Table 16.2.2-33: 4. LMp on-the-spot measurements/tests – NO<sub>2</sub>

# The following figures present the NO<sub>2</sub> concentration hourly values:





Figure 16.2.2-37: 4. LMp - NO2 hourly run-off curves

| NO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(μg/m³) |    |   |    |    |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|----|---|----|----|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                                 |    |   |    |    |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 03. 14-03.27.) 19 13 33 31                               |    |   |    |    |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 06. 09-22.)                                              | 15 | 9 | 28 | 26 |  |  |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012. 09. 27-10.11.) 30 19 47 45                               |    |   |    |    |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2013.01.12-01.25.) 26 17 41 38                                 |    |   |    |    |  |  |  |  |  |  |  |  |  |





koncentráció - concentration, Csámpa, Kis utca - Csámpa, Kis street, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-38: 4. LMp - NO2 daily average concentration

The NO<sub>2</sub> hourly values measured at the 4. LMp Paks-Csámpa, Kis street measuring point were not higher than the 100  $\mu$ g/m<sup>3</sup> hourly limit.

The highest hourly NO<sub>2</sub> value was measured during the 3rd measuring period, on October 9, 2012 between 06.00-07.00 a.m., and this value was 72  $\mu$ g/m<sup>3</sup>.

The NO<sub>2</sub> hourly run-off curves can well characterise the daily volatilities during the 1st and 2nd measuring periods, and this characteristic cannot be detected during the 3rd and 4th measuring periods.

During the measurements the 24-hour limit was never exceeded.

Bi-weekly average values of the NO<sub>2</sub> tests during the four periods were: 19 µg/m<sup>3</sup>, 15 µg/m<sup>3</sup>, 30 µg/m<sup>3</sup>, 26 µg/m<sup>3</sup>.

NO<sub>2</sub> measurement results during the non-heating season were slightly lower than during the heating season, thus values measured in this measuring point can reflect the volatility in line with the heating-non-heating seasons.

#### NO<sub>x</sub> immission

|           |             |        |       |                   |           |             |        |          | NO <sub>x</sub> cor | ncentrat     | ion         |           |       |                   |           |         |      |       |                   |
|-----------|-------------|--------|-------|-------------------|-----------|-------------|--------|----------|---------------------|--------------|-------------|-----------|-------|-------------------|-----------|---------|------|-------|-------------------|
|           |             |        |       |                   |           |             | Base   | d on dai | ily assessme        | nt hourly co | oncentratio | on values | S     |                   |           |         |      |       |                   |
|           | 1           | . Test |       |                   |           | 2           | . Test |          |                     |              |             | 3. TEST   | Ē     |                   |           | 4.      | TEST |       |                   |
| Measuring | Avera<br>ge | Min    | Max   | 98%<br>percentile | Measuring | Avera<br>ge | Min    | Max      | 98%<br>percentile   | Measurin     | Averag<br>e | Min       | Max   | 98%<br>percentile | Measuring | Average | Min  | Max   | 98%<br>percentile |
| penod     |             | μ      | g/m³  | T                 | penou     |             | μ      | ıg/m³    |                     | g periou     |             | I         | µg/m³ |                   | period    |         | μç   | /m³   |                   |
| March14   | 19,4        | 16,3   | 22,7  | 22,7              | June 09   | 13,4        | 10,2   | 20,1     | 19,7                | Sept.28      | 51,3        | 30,4      | 63,9  | 63,9              | Jan.12    | 23,0    | 15,8 | 52,7  | 46,2              |
| March15   | 19,5        | 16,4   | 30,2  | 29,7              | June 10   | 13,8        | 10,2   | 19,3     | 19,1                | Sept.29      | 56,0        | 35,9      | 99,8  | 91,4              | Jan.13    | 20,7    | 18,0 | 24,4  | 24,4              |
| March16   | 29,6        | 17,7   | 54,4  | 53,3              | June 11   | 13,7        | 8,9    | 26,8     | 23,9                | Sept.30      | 39,4        | 27,8      | 51,5  | 51,1              | Jan.14    | 27,8    | 18,5 | 44,4  | 43,0              |
| March17   | 22,0        | 13,0   | 44,7  | 39,3              | June 12   | 17,4        | 9,0    | 47,2     | 40,9                | Oct.01       | 45,6        | 27,9      | 71,7  | 69,9              | Jan.15    | 39,8    | 25,7 | 88,7  | 71,1              |
| March18   | 14,7        | 13,5   | 17,0  | 16,8              | June 13   | 11,5        | 7,8    | 21,0     | 20,4                | Oct.02       | 60,6        | 33,8      | 85,2  | 81,0              | Jan.16    | 29,2    | 23,6 | 35,1  | 34,9              |
| March19   | 16,5        | 13,3   | 25,7  | 24,0              | June 14   | 13,2        | 7,6    | 24,3     | 23,4                | Oct.03       | 33,1        | 15,9      | 60,5  | 56,7              | Jan.17    | 32,4    | 21,3 | 48,0  | 46,3              |
| March20   | 20,8        | 12,4   | 34,3  | 31,1              | June 15   | 19,5        | 9,1    | 39,0     | 37,7                | Oct.04       | 48,1        | 29,3      | 100,6 | 99,7              | Jan.18    | 32,1    | 23,0 | 37,9  | 37,9              |
| March21   | 24,6        | 14,3   | 50,2  | 48,3              | June 16   | 21,5        | 9,2    | 40,8     | 40,0                | Oct.05       | 33,3        | 22,5      | 49,0  | 47,9              | Jan.19    | 27,9    | 23,1 | 36,9  | 34,6              |
| March22   | 28,8        | 13,9   | 100,2 | 85,7              | June 17   | 17,0        | 9,9    | 30,9     | 30,4                | Oct.06       | 40,8        | 31,7      | 60,9  | 59,4              | Jan.20    | 28,2    | 21,5 | 56,6  | 53,0              |
| March23   | 28,2        | 17,0   | 80,0  | 61,8              | June 18   | 21,0        | 13,0   | 51,1     | 42,3                | Oct.07       | 28,3        | 9,6       | 36,9  | 35,7              | Jan.21    | 58,2    | 25,0 | 109,3 | 104,9             |
| March24   | 22,3        | 15,0   | 37,8  | 35,5              | June 19   | 23,1        | 11,6   | 50,9     | 44,5                | Oct.08       | 21,4        | 13,3      | 47,1  | 43,2              | Jan.22    | 34,4    | 22,9 | 53,1  | 50,2              |
| March25   | 17,7        | 13,1   | 27,7  | 24,9              | June 20   | 25,6        | 13,7   | 45,7     | 43,1                | Oct.09       | 41,6        | 16,1      | 128,2 | 113,6             | Jan.23    | 31,0    | 22,8 | 52,7  | 47,6              |
| March26   | 14,9        | 12,0   | 19,4  | 18,5              | June 21   | 25,2        | 12,7   | 51,8     | 50,9                | Oct.10       | 26,5        | 19,7      | 42,5  | 38,7              | Jan.24    | 25,7    | 21,1 | 32,5  | 32,3              |
| March27   | 16,1        | 10,3   | 24,0  | 22,8              | June 22   | 19,2        | 13,2   | 36,4     | 36,2                | Oct.11       | 39,2        | 20,6      | 118,7 | 109,8             | Jan.25    | 42,7    | 21,2 | 62,4  | 62,3              |
| Average   | 21          | 14     | 41    | 37                |           | 18          | 10     | 36       | 34                  |              | 40          | 24        | 73    | 69                |           | 32      | 22   | 52    | 49                |

#### Comment:

The measurement was suspended on March 20, 2012 between 10.00 – 11.00 hours due to calibration, between 12.00 – 13.00 hours due to maintenance.

The measurement was suspended on June 15, 2012 between 9.00 – 10.00 hours due to calibration.

The measurement was suspended on October 5, 2012 between 10.00 – 11.00 hours due to calibration.

The measurement was suspended on January 18, 2013 between 10.00-11.00 hours due to calibration.

Table 16.2.2-35: 4. LMp on-the-spot measurements/tests – NOx



# The following figures present the NO<sub>x</sub> concentration hourly values:



Figure 16.2.2-39: 4. LMp - NO<sub>x</sub> hourly run-off curves

| NO<br>Based on I                               | NO <sub>x</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |     |     |                |  |  |  |  |  |  |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------|-----|-----|----------------|--|--|--|--|--|--|--|--|
|                                                | Average                                                                        | Min | Max | 98% percentile |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 03. 14-03.27.)           | 21                                                                             | 14  | 41  | 37             |  |  |  |  |  |  |  |  |
| 2. TEST (2012. 06. 09-22.)                     | 18                                                                             | 10  | 36  | 34             |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012. 09. 27-10.11.)           | 40                                                                             | 24  | 73  | 69             |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2013.01.12-01.25.) 32 22 52 49 |                                                                                |     |     |                |  |  |  |  |  |  |  |  |

Table 16.2.2-36: 4. LMp NOx measurements/tests results



koncentráció - concentration, Csámpa, Kis utca - Csámpa, Kis street, nincs határérték - no limit, mérés - measurement/test

Figure 16.2.2-40: 4. LMp - NOx daily average concentration

Decree 4/2011. (I. 14.) VM defines no immission limit for NO<sub>x</sub>. The former decree defined 200  $\mu$ g/m<sup>3</sup> hourly, 150  $\mu$ g/m<sup>3</sup> 24-hour, 70  $\mu$ g/m<sup>3</sup> annual limit for NO<sub>x</sub>. The measured hourly NO<sub>x</sub> was never during the measuring period higher than the formerly defined limit.

The hourly run-off curves can well characterise the daily volatility in the 1st and 2nd measuring periods, but during the 3rd and 4th measuring periods this volatility was not so characteristic.

The highest hourly NO<sub>x</sub> value was measured in the 3rd measuring period, on October 9, 2012 between 06.00-07.00 a.m., this value was 128  $\mu$ g/m<sup>3</sup>.

Bi-weekly average values of the NO<sub>x</sub> measurements were: 21,1 µg/m<sup>3</sup>, 18,2 µg/m<sup>3</sup>, 40,4 µg/m<sup>3</sup>, 32,4 µg/m<sup>3</sup>.

 $NO_x$  measurement results – similarly to the  $NO_2$  measurement results – were lower during the non-heating season than during the heating season, thus the values reflect the volatility in line with the heating-non-heating seasons.

# SO<sub>2</sub> immission

|           | SO <sub>2</sub> concentration |        |       |                   |           |             |         |          |                   |                |              |        |       |                   |           |             |         |       |                   |
|-----------|-------------------------------|--------|-------|-------------------|-----------|-------------|---------|----------|-------------------|----------------|--------------|--------|-------|-------------------|-----------|-------------|---------|-------|-------------------|
|           |                               |        |       |                   |           |             | Base    | d on dai | ly assessmen      | t hourly conce | entration va | alues  |       |                   |           |             |         |       |                   |
|           | 1                             | . Test |       |                   |           | 2           | 2. TEST |          |                   |                | 3            | . Test |       |                   |           | 4           | I. TEST |       |                   |
| Measuring | Avera<br>ge                   | Min    | Max   | 98%<br>percentile | Measuring | Avera<br>ge | Min     | Max      | 98%<br>percentile | Measuring      | Averag<br>e  | Min    | Max   | 98%<br>percentile | Measuring | Avera<br>ge | Min     | Max   | 98%<br>percentile |
| period    |                               | μ      | ıg/m³ | 1                 | penod     |             | ŀ       | ıg/m³    | 1                 | period         |              | μ      | ıg/m³ | -                 | penou     |             | μ       | ıg/m³ | 1                 |
| March14   | 1,0                           | 0,8    | 1,7   | 1,7               | June 09   | 0,7         | 0,6     | 1,2      | 1,2               | Sept.28        | 1,0          | 0,5    | 1,5   | 1,5               | Jan.12    | 4,4         | 3,5     | 4,7   | 4,7               |
| March15   | 0,9                           | 0,8    | 1,3   | 1,3               | June 10   | 0,7         | 0,6     | 0,9      | 0,9               | Sept.29        | 0,4          | 0,4    | 0,7   | 0,6               | Jan.13    | 4,5         | 4,0     | 5,2   | 5,2               |
| March16   | 1,4                           | 0,8    | 2,2   | 2,2               | June 11   | 0,8         | 0,6     | 1,1      | 1,1               | Sept.30        | 0,5          | 0,4    | 0,8   | 0,8               | Jan.14    | 4,4         | 4,1     | 4,8   | 4,8               |
| March17   | 1,3                           | 0,8    | 2,7   | 2,5               | June 12   | 0,7         | 0,6     | 1,0      | 1,0               | Oct.01         | 0,9          | 0,5    | 1,3   | 1,3               | Jan.15    | 4,2         | 3,9     | 4,4   | 4,4               |
| March18   | 1,6                           | 1,0    | 1,9   | 1,9               | June 13   | 0,7         | 0,6     | 1,0      | 1,0               | Oct.02         | 0,7          | 0,5    | 0,9   | 0,9               | Jan.16    | 4,2         | 3,9     | 4,5   | 4,5               |
| March19   | 1,0                           | 0,8    | 1,3   | 1,3               | June 14   | 0,6         | 0,6     | 0,8      | 0,8               | Oct.03         | 0,7          | 0,4    | 1,0   | 1,0               | Jan.17    | 4,1         | 4,0     | 4,3   | 4,3               |
| March20   | 1,4                           | 0,8    | 2,0   | 1,9               | June 15   | 0,6         | 0,6     | 1,2      | 1,0               | Oct.04         | 0,8          | 0,4    | 1,6   | 1,6               | Jan.18    | 4,5         | 4,3     | 5,0   | 4,9               |
| March21   | 1,1                           | 0,8    | 1,8   | 1,8               | June 16   | 0,7         | 0,6     | 0,9      | 0,9               | Oct.05         | 0,6          | 0,4    | 1,1   | 1,1               | Jan.19    | 4,6         | 4,3     | 4,9   | 4,9               |
| March22   | 0,9                           | 0,8    | 1,3   | 1,3               | June 17   | 0,8         | 0,6     | 1,2      | 1,2               | Oct.06         | 0,9          | 0,4    | 1,9   | 1,9               | Jan.20    | 4,5         | 4,1     | 4,8   | 4,8               |
| March23   | 0,9                           | 0,8    | 1,4   | 1,4               | June 18   | 0,9         | 0,6     | 1,6      | 1,6               | Oct.07         | 1,0          | 0,4    | 2,8   | 2,6               | Jan.21    | 4,2         | 4,0     | 4,5   | 4,5               |
| March24   | 1,0                           | 0,8    | 1,5   | 1,5               | June 19   | 1,3         | 0,6     | 2,9      | 2,8               | Oct.08         | 0,6          | 0,4    | 1,6   | 1,3               | Jan.22    | 4,6         | 4,1     | 5,2   | 5,2               |
| March25   | 1,0                           | 0,8    | 1,5   | 1,5               | June 20   | 0,9         | 0,6     | 1,7      | 1,6               | Oct.09         | 0,6          | 0,4    | 1,3   | 1,3               | Jan.23    | 4,2         | 3,7     | 4,6   | 4,6               |
| March26   | 1,2                           | 0,8    | 2,1   | 2,0               | June 21   | 0,8         | 0,6     | 1,3      | 1,3               | Oct.10         | 0,6          | 0,4    | 0,9   | 0,9               | Jan.24    | 4,6         | 4,3     | 5,3   | 5,2               |
| March27   | 1,1                           | 0,8    | 2,2   | 2,2               | June 22   | 0,8         | 0,6     | 1,1      | 1,1               | Oct.11         | 0,5          | 0,4    | 0,8   | 0,8               | Jan.25    | 5,7         | 4,3     | 7,2   | 7,0               |
| Average   | 1                             | 1      | 2     | 2                 |           | 1           | 1       | 1        | 1                 |                | 1            | 0      | 1     | 1                 |           | 4           | 4       | 5     | 5                 |

#### Comment:

The measurement was suspended on March 20, 2012 between 10.00 – 11.00 hours due to calibration, between 12.00 – 13.00 hours due to maintenance.

The measurement was suspended on June 15, 2012 between 9.00 – 10.00 hours due to calibration.

The measurement was suspended on October 5, 2012 between 10.00 – 11.00 hours due to calibration.

The measurement was suspended on January 18, 2013 between 10.00-11.00 hours due to calibration.

Table 16.2.2-37: 4. LMp on-the-spot measurements/tests – SO<sub>2</sub>.



# The following figures present the SO<sub>2</sub> concentration hourly test values:



Figure 16.2.2-41: 4. LMp - SO<sub>2</sub> hourly run-off curves

| SO<br>Based on h                           | SO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |     |     |                |  |  |  |  |  |  |  |  |  |
|--------------------------------------------|--------------------------------------------------------------------------------|-----|-----|----------------|--|--|--|--|--|--|--|--|--|
|                                            | Average                                                                        | Min | Max | 98% percentile |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 03. 14-03.27.)       | 1                                                                              | 1   | 2   | 2              |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 06. 09-22.)          | 1                                                                              | 1   | 1   | 1              |  |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012. 09. 27-10.11.)       | 1                                                                              | 0   | 1   | 1              |  |  |  |  |  |  |  |  |  |
| <b>4. TEST</b> (2013.01.12-01.25.) 4 4 5 5 |                                                                                |     |     |                |  |  |  |  |  |  |  |  |  |

Table 16.2.2-38: 4. LMp SO2 measurements/tests results



koncentráció - concentration, Csámpa, Kis utca - Csámpa, Kis street, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-42: 4.  $LMp - SO_2$  daily average concentration

The measured hourly SO<sub>2</sub> values were well below the 250  $\mu$ g/m<sup>3</sup> hourly limit.

The highest concentration during the 4th measurement period was measured on January 25, 2013 between 10.00-11.00 a.m., this value was 7,2  $\mu$ g/m<sup>3</sup>, 3% of the hourly limit.

The 24-hour average concentration values were also well below the 125 µg/m<sup>3</sup> daily limit.

Bi-weekly average values of the  $SO_2$  measurements were:  $1 \mu g/m^3$ ,  $1 \mu g/m^3$ ,  $1 \mu g/m^3$ ,  $4 \mu g/m^3$ .

## CO immission

|           | CO concentration |         |        |              |          |         |         |            |                 |              |           |            |        |              |          |         |       |        |                 |
|-----------|------------------|---------|--------|--------------|----------|---------|---------|------------|-----------------|--------------|-----------|------------|--------|--------------|----------|---------|-------|--------|-----------------|
|           |                  |         |        |              |          |         | Based   | on daily a | assessmen       | t hourly con | centratio | n values * |        |              |          |         |       |        |                 |
|           | 1                | I. TEST |        |              |          |         | 2. Test |            |                 |              |           | 3. Test    |        |              | 4. TEST  |         |       |        |                 |
| Measuring | Average          | Min     | Max    | 98% per cent | Measurin | Average | Min     | Max        | 98% per<br>cent | Measuring    | Average   | Min        | Max    | 98% per cent | Measurin | Average | Min   | Max    | 98% per<br>cent |
| penou     |                  | ł       | ug/m³  |              | y period |         | μί      | g/m³       | •               | period       |           |            | ug/m³  |              | y periou |         | μί    | g/m³   | •               |
| March14   | 256,9            | 114,0   | 585,0  | 572,6        | June 09  | 176,2   | 70,0    | 298,0      | 293,4           | Sept.28      | 271,0     | 120,0      | 502,0  | 449,6        | Jan.12   | 516,8   | 126,0 | 848,0  | 827,3           |
| March15   | 270,9            | 80,0    | 761,0  | 713,6        | June 10  | 255,8   | 118,0   | 408,0      | 400,6           | Sept.29      | 275,0     | 118,0      | 453,0  | 439,2        | Jan.13   | 434,0   | 155,0 | 691,0  | 664,8           |
| March16   | 465,9            | 130,0   | 1510,0 | 1304,8       | June 11  | 202,9   | 49,0    | 472,0      | 451,3           | Sept.30      | 264,2     | 160,0      | 578,0  | 572,0        | Jan.14   | 529,1   | 111,0 | 1220,0 | 1075,1          |
| March17   | 352,5            | 113,0   | 871,0  | 809,4        | June 12  | 216,6   | 109,0   | 485,0      | 462,5           | Oct.01       | 256,6     | 101,0      | 431,0  | 421,3        | Jan.15   | 532,8   | 218,0 | 960,0  | 886,4           |
| March18   | 297,5            | 115,0   | 590,0  | 564,2        | June 13  | 255,2   | 48,0    | 520,0      | 488,3           | Oct.02       | 406,0     | 164,0      | 974,0  | 884,8        | Jan.16   | 325,6   | 143,0 | 628,0  | 570,5           |
| March19   | 273,1            | 127,0   | 460,0  | 459,5        | June 14  | 679,4   | 323,0   | 1361,0     | 1290,6          | Oct.03       | 265,9     | 121,0      | 655,0  | 617,3        | Jan.17   | 435,6   | 119,0 | 1073,0 | 947,9           |
| March20   | 306,0            | 117,0   | 644,0  | 632,0        | June 15  | 245,8   | 116,0   | 419,0      | 379,0           | Oct.04       | 385,6     | 213,0      | 813,0  | 781,3        | Jan.18   | 541,9   | 194,0 | 866,0  | 853,7           |
| March21   | 419,7            | 104,0   | 1233,0 | 1178,3       | June 16  | 192,1   | 60,0    | 465,0      | 424,1           | Oct.05       | 463,7     | 177,0      | 1062,0 | 952,4        | Jan.19   | 431,7   | 149,0 | 946,0  | 913,3           |
| March22   | 422,8            | 53,0    | 1264,0 | 1247,9       | June 17  | 224,3   | 54,0    | 506,0      | 466,4           | Oct.06       | 485,8     | 243,0      | 1233,0 | 1111,6       | Jan.20   | 437,7   | 116,0 | 992,0  | 919,3           |
| March23   | 418,1            | 99,0    | 878,0  | 811,3        | June 18  | 207,4   | 73,0    | 381,0      | 378,2           | Oct.07       | 596,9     | 120,0      | 1515,0 | 1260,6       | Jan.21   | 484,6   | 125,0 | 982,0  | 962,2           |
| March24   | 356,6            | 69,0    | 707,0  | 701,0        | June 19  | 259,3   | 50,0    | 530,0      | 507,0           | Oct.08       | 674,6     | 148,0      | 1446,0 | 1366,4       | Jan.22   | 463,7   | 205,0 | 803,0  | 763,0           |
| March25   | 395,0            | 98,0    | 1095,0 | 986,0        | June 20  | 196,9   | 116,0   | 276,0      | 269,6           | Oct.09       | 790,8     | 346,0      | 1994,0 | 1792,5       | Jan.23   | 370,5   | 224,0 | 564,0  | 536,9           |
| March26   | 283,6            | 126,0   | 575,0  | 556,1        | June 21  | 261,0   | 63,0    | 491,0      | 475,8           | Oct.10       | 669,0     | 222,0      | 1169,0 | 1138,2       | Jan.24   | 488,3   | 154,0 | 1290,0 | 1242,2          |
| March27   | 437,6            | 67,0    | 1777,0 | 1534,1       | June 22  | 317,5   | 122,0   | 1196,0     | 977,0           | Oct.11       | 582,8     | 158,0      | 1210,0 | 1196,7       | Jan.25   | 493,1   | 206,0 | 920,0  | 871,2           |
| Average   | 354              | 101     | 925    | 862          |          | 264     | 98      | 558        | 519             |              | 456       | 172        | 1002   | 927          |          | 463     | 160   | 913    | 860             |

Comment:

\* Maximum of daily 8-hour moving average concentrations. The maximum value shall be selected among the 8-hour moving average values calculated on the basis of the hourly averages. . The 8-hour average values that were so calculated shall refer to those days, on which the 8-hour period ends, thus the first test period of any day will last from 17 hours of the previous day until 01 hours of the given day. The last test on any day will last from 16 to 24 hours within the given day. The measurement was suspended on March 20, 2012 between 10.00 – 11.00 hours due to calibration, and between 12.00 – 13.00 hours due to maintenance.

The measurement was suspended on June 15, 2012 between 9.00 – 10.00 hours due to calibration.

The measurement was suspended on October 5, 2012 between 10.00 – 11.00 hours due to calibration. The measurement was suspended on January 18, 2013 between 10.00-11.00 hours due to calibration.

Table 16.2.2-39: 4. LMp on-the-spot measurements/tests - CO

# The following figures present the CO concentration hourly test values:



koncentráció - concentration, Csámpa, Kis utca - Csámpa, Kis street, mérési időszak - measurement period, óra - hour

Figure 16.2.2-43: 4. LMp - CO hourly run-off curves

| CC<br>Based on H                                   | CO concentration<br>Based on hourly measurement values<br>(µg/m³) |     |      |                |  |  |  |  |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------|-----|------|----------------|--|--|--|--|--|--|--|--|
|                                                    | Average                                                           | Min | Max  | 98% percentile |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 03. 14-03.27.)               | 550                                                               | 48  | 899  | 891            |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 06. 09-22.)                  | 380                                                               | 230 | 908  | 812            |  |  |  |  |  |  |  |  |
| <b>3. Test</b> (2012. 09. 27-10.11.)               | 624                                                               | 323 | 1223 | 1127           |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2013.01.12-01.25.) 638 439 854 825 |                                                                   |     |      |                |  |  |  |  |  |  |  |  |

Table 16.2.2-40: 4. LMp CO measurements/tests results



koncentráció - concentration, Csámpa, Kis utca - Csámpa, Kis street, 24 órás határérték - 24-hour limit, mérés - measurement/test Figure 16.2.2-44: 4. LMp – CO daily average concentration

The hourly CO immission values were always below the 10 000 µg/m<sup>3</sup> hourly limit.

The highest concentration was measured during the 3rd measurement period on October 9, between 11.00-12.00 a.m., its value was 1994  $\mu$ g/m<sup>3</sup>, 20% of the hourly limit.

The maximum of the 8-hour moving average values did not reach even 20% of the 24-hour limit (5 000  $\mu g/m^3$ ) 20 %

Bi-weekly average values of the CO measurements were: 550 µg/m<sup>3</sup>, 380 µg/m<sup>3</sup>, 624 µg/m<sup>3</sup>, 638 µg/m<sup>3</sup>.

# PM<sub>10</sub>, TSPM 24-hour concentration

| Measuring | <b>PM</b> 10 | TSPM | Measuring | <b>PM</b> 10 | TSPM           | Measuring | <b>PM</b> 10 | TSPM           | Measuring | <b>PM</b> 10 | TSPM            |
|-----------|--------------|------|-----------|--------------|----------------|-----------|--------------|----------------|-----------|--------------|-----------------|
| penod     | μg           | /m³  | penod     | µg/r         | n <sup>3</sup> | penod     | μg/          | m <sup>3</sup> | period    | μg           | /m <sup>3</sup> |
| March14   | 26           | 32   | June 09   | 14           | 21             | Sept.28   | 11           | 15             | Jan.12    | 15           | 16              |
| March15   | 23           | 31   | June 10   | 13           | 17             | Sept.29   | 23           | 28             | Jan.13    | 33           | 36              |
| March16   | 34           | 44   | June 11   | 12           | 13             | Sept.30   | 15           | 21             | Jan.14    | 35           | 36              |
| March17   | 36           | 49   | June 12   | 7            | 9              | Oct.01    | 37           | 46             | Jan.15    | 41           | 42              |
| March18   | 41           | 84   | June 13   | 11           | 14             | Oct.02    | 45           | -              | Jan.16    | 31           | 32              |
| March19   | 29           | 37   | June 14   | 9            | 10             | Oct.03    | 15           | -              | Jan.17    | 35           | 36              |
| March20   | 30           | 42   | June 15   | 12           | 18             | Oct.04    | 15           | -              | Jan.18    | 30           | 38              |
| March21   | 34           | 44   | June 16   | 15           | 21             | Oct.05    | 13           | 25             | Jan.19    | 33           | 35              |
| March22   | 38           | 49   | June 17   | 26           | 35             | Oct.06    | 26           | 36             | Jan.20    | 41           | 42              |
| March23   | 38           | 59   | June 18   | 24           | 38             | Oct.07    | 18           | 22             | Jan.21    | 48           | 49              |
| March24   | 43           | 56   | June 19   | 21           | 31             | Oct.08    | 9            | 17             | Jan.22    | 28           | 31              |
| March25   | 36           | 54   | June 20   | 24           | 31             | Oct.09    | 17           | 29             | Jan.23    | 38           | 39              |
| March26   | 26           | 45   | June 21   | 36           | 48             | Oct.10    | 40           | 52             | Jan.24    | 34           | 35              |
| March27   | 28           | 51   | June 22   | 22           | 27             | Oct.11    | 20           | 27             | Jan.25    | 69           | 70              |
| min       | 23           | 31   |           | 7            | 9              |           | 9            | 15             |           | 15           | 16              |
| max       | 43           | 84   |           | 36           | 48             |           | 45           | 52             |           | 69           | 70              |
| Average   | 33           | 48   |           | 17           | 24             |           | 22           | 29             |           | 37           | 39              |

Comment:

TSPM test was suspended between October 2-4 due to technical reasons.

Table 16.2.2-41: 4. LMp on-the-spot measurements/tests – PM10, TSPM



# The following figure the PM<sub>10</sub> and TSPM daily concentration values:

koncentráció - concentration, Csámpa, Kis utca - Csámpa, Kis street, mérési időszak - measurement period, dátum - date, határérték - limit

Figure 16.2.2-45: 4. LMp - PM<sub>10</sub> and a TSPM daily run-off curves

The 24-hour average and maximum **PM**<sub>10</sub> values measured during the <u>1st and 2nd measuring periods</u> were lower than the limit. The total particulate matter samples taken during the <u>3rd measuring period</u> between October 2 and 4 could not be analysed and assessed due to technical problems. The 24-hour average and maximum M<sub>10</sub> values taken during the measuring period were lower than the limit. The 24-hour 69  $\mu$ g/m<sup>3</sup> average PM<sub>10</sub> value measured during the <u>4th measuring period</u> on January 25, 2013 was higher than the limit. The automatic measuring stations also measured values higher than the limit on the same day in the southern part of the country, these values were between 51-105  $\mu$ g/m<sup>3</sup>.

The presently effective Decree 4/2011.(I.14.) VM defines no limit for **TSPM**. The formerly valid Decree 14/2001.(V.9.) KöM-EüM-FVM defined 200  $\mu$ g/m<sup>3</sup> hourly and 100  $\mu$ g/m<sup>3</sup> 24-hour limit. The measurement results did not exceed the former 24-hour limit.

# Settling dust

| Settling dust concentration |            |                         |  |  |  |  |  |  |  |  |  |
|-----------------------------|------------|-------------------------|--|--|--|--|--|--|--|--|--|
| First days                  | Last days  | g/m <sup>2</sup> x30nap |  |  |  |  |  |  |  |  |  |
| 2012.01.23                  | 2012.02.23 | 0,4                     |  |  |  |  |  |  |  |  |  |
| 2012.02.23                  | 2012.03.28 | 1,9                     |  |  |  |  |  |  |  |  |  |
| 2012.03.28                  | 2012.04.26 | 5,8                     |  |  |  |  |  |  |  |  |  |
| 2012.04.26                  | 2012.05.22 | 8,0                     |  |  |  |  |  |  |  |  |  |
| 2012.05.22                  | 2012.06.25 | 10,3                    |  |  |  |  |  |  |  |  |  |
| 2012.06.25                  | 2012.07.31 | 4,0                     |  |  |  |  |  |  |  |  |  |
| 2012.07.31                  | 2012.08.30 | 6,4                     |  |  |  |  |  |  |  |  |  |
| 2012.09.11                  | 2012.10.12 | 5,1                     |  |  |  |  |  |  |  |  |  |
| 2012.10.12                  | 2012.11.12 | 3,5                     |  |  |  |  |  |  |  |  |  |
| 2012.11.12                  | 2012.12.12 | 1,1                     |  |  |  |  |  |  |  |  |  |
| 2012.12.12                  | 2013.01.11 | 0,6                     |  |  |  |  |  |  |  |  |  |
| 2013.01.11                  | 2013.02.12 | 0,8                     |  |  |  |  |  |  |  |  |  |
| 2013.02.25                  | 2013.03.29 | 2,7                     |  |  |  |  |  |  |  |  |  |

Table 16.2.2-42: 4. LMp on-the-spot measurements/tests - settling dust

Decree 4/2011. (I. 14.) VM defines no limit for the **settling dust**. The former decree defined 16 g/m<sup>2</sup> x 30-day limit. The measured settling dust concentrations did not exceed the former limit, and the highest measured value was 64% of the limit.

# 16.2.2.5.5 Dunaszentbenedek - 5. LMp



mérés - measurement/test, sikertelen mérés - unsuccessful measurement/test

source : Google Earth

Figure 16.2.2-46: 5. LMp location

Test 1. planned at 5. LMp (as selected in advance) at *Dam keeper house* encountered unforeseeable technical difficulties. During the days after commencing the measurements significant voltage volatility (between 170 V - 220 V) emerged. The measuring instruments would need minimum 200 V voltage level for their ordinary operation. Efforts were made to perform the test a couple of streets further from the originally planned measuring station, at *Dunakert street 2.*, but similar voltage volatility prevented the test again. We tried to find a measuring point that can secure acceptable technical conditions involving the Mayor, but it took quite a long time and at the end of the day the 5. LMp 1. test had to be suspended.

As the test at Dunaszentbenedek had to be suspended, the measurement plan had to be re-scheduled, and the test series continued at Paks, and the suspended test was scheduled after the completion of the total measurement series, for 2013 first quarter.

The site for 5. LMp new measurement was selected on July 4, 2012 involving the representative of OKI and ERBE. The new measuring point is located *in the area of the elementary school at the corner of Rózsa and Kölcsei streets*.

The 1st measuring period started at the Dam keeper house in accordance with the original plan for the settling dust measurements. A new settling dust measurement series was launched (simultaneously with the other measuring points) on July 17, 2012. The measurements were trouble-freely performed on the selected new measuring station.

Thus there was no professional reason for performing parallel settling dust measurements on the old and new points, and the original task requires holding the settling dust measurements on the same location as the other air pollution measurements, so no further settling dust measurements were performed after the 3<sup>rd</sup> test at the Dam keeper house.

3. TEST



1. TEST

2. TEST



New measurement point: Rózsa street



5. TEST

Point of the unsuccessful test: Dam keeper house





Dunaszentbenedek, Dam keeper house



4. TEST



Dunaszentbenedek, Rózsa street

# SETTLING DUST SAMPLING UNITS

Figure 16.2.2-47: Location of testing truck and settling dust sampling units at 5 LMp sites

# NO<sub>2</sub> immission

|           | NO <sub>2</sub> concentration |        |      |                   |           |              |         |          |                   |                |              |         |       |                   |           |         |     |     |                   |
|-----------|-------------------------------|--------|------|-------------------|-----------|--------------|---------|----------|-------------------|----------------|--------------|---------|-------|-------------------|-----------|---------|-----|-----|-------------------|
|           |                               |        |      |                   |           |              | Bas     | sed on d | laily assessme    | ent hourly cor | ncentration  | values  |       |                   |           |         |     |     |                   |
|           | 2                             | . TEST |      |                   |           |              | 3. Test |          |                   |                | 4            | I. TEST |       |                   | 5. TEST   |         |     |     |                   |
| Measuring | Aver-<br>age                  | Min    | Max  | 98%<br>percentile | Measuring | Aver-<br>age | Min     | Max      | 98%<br>percentile | Measuring      | Aver-<br>age | Min     | Max   | 98%<br>percentile | Measuring | Average | Min | Max | 98%<br>percentile |
| penou     |                               | μ      | g/m³ |                   | penou     |              |         | µg/m³    | 1                 | penou          |              | 4       | ıg/m³ | 1                 | pendu     |         | μg  | /m³ |                   |
| July17    | 9                             | 7      | 14   | 13                | Oct.13    | 30           | 23      | 38       | 38                | Dec.28         | 18           | 14      | 26    | 25                | March15   | 14      | 13  | 19  | 18                |
| July18    | 11                            | 9      | 16   | 16                | Oct.14    | 32           | 28      | 37       | 36                | Dec.29         | 21           | 14      | 36    | 36                | March16   | 15      | 12  | 24  | 23                |
| July19    | 14                            | 11     | 18   | 17                | Oct.15    | 35           | 26      | 46       | 45                | Dec.30         | 19           | 16      | 28    | 26                | March17   | 23      | 18  | 34  | 33                |
| July20    | 16                            | 11     | 25   | 23                | Oct.16    | 33           | 21      | 49       | 48                | Dec.31         | 26           | 20      | 46    | 44                | March18   | 24      | 17  | 33  | 32                |
| July21    | 10                            | 8      | 14   | 13                | Oct.17    | 23           | 17      | 35       | 32                | Jan.01         | 21           | 17      | 26    | 25                | March19   | 18      | 11  | 29  | 28                |
| July22    | 16                            | 10     | 25   | 25                | Oct.18    | 30           | 21      | 51       | 47                | Jan.02         | 25           | 18      | 47    | 46                | March20   | 18      | 13  | 33  | 32                |
| July23    | 12                            | 9      | 16   | 15                | Oct.19    | 32           | 23      | 40       | 39                | Jan.03         | 22           | 17      | 36    | 34                | March21   | 14      | 10  | 21  | 20                |
| July24    | 18                            | 15     | 23   | 23                | Oct.20    | 34           | 26      | 47       | 45                | Jan.04         | 17           | 15      | 20    | 20                | March22   | 13      | 11  | 14  | 14                |
| July25    | 23                            | 19     | 29   | 29                | Oct.21    | 30           | 24      | 40       | 38                | Jan.05         | 11           | 6       | 16    | 16                | March23   | 18      | 14  | 22  | 21                |
| July26    | 24                            | 17     | 31   | 31                | Oct.22    | 26           | 22      | 30       | 30                | Jan.06         | 7            | 6       | 10    | 9                 | March24   | 13      | 11  | 16  | 16                |
| July27    | 21                            | 15     | 30   | 29                | Oct.23    | 30           | 25      | 36       | 36                | Jan.07         | 10           | 8       | 17    | 16                | March25   | 12      | 10  | 14  | 14                |
| July28    | 24                            | 17     | 36   | 36                | Oct.24    | 30           | 27      | 33       | 33                | Jan.08         | 11           | 7       | 17    | 16                | March26   | 12      | 10  | 15  | 15                |
| July29    | 18                            | 11     | 25   | 24                | Oct.25    | 28           | 25      | 34       | 34                | Jan.09         | 14           | 9       | 18    | 18                | March27   | 17      | 10  | 28  | 28                |
| July30    | 16                            | 10     | 27   | 26                | Oct.26    | 31           | 22      | 45       | 43                | Jan.10         | 16           | 12      | 22    | 21                | March28   | 21      | 17  | 26  | 26                |
| Avr.      | 17                            | 12     | 23   | 23                |           | 30           | 23      | 40       | 39                |                | 17           | 13      | 26    | 25                |           | 16      | 12  | 23  | 23                |

#### Comment:

The measurement was suspended on July 23, 2012 between 10.00 – 12.00 hours due to calibration. The measurement was suspended on October 18, 2012 between 10.00-11.00 hours due to calibration. The measurement was suspended on January 2, 2013 between 11.00-12.00 hours due to calibration. The measurement was suspended on March 18, 2013 between 11.00-12.00 hours due to calibration.

Table 16.2.2-43: 5. LMp on-the-spot measurements/tests – NO2





koncentráció - concentration, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-48: 5. LMp - NO<sub>2</sub> hourly run-off curves

| NO<br>Based on H                             | NO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(μg/m³) |     |     |                |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------|-----|-----|----------------|--|--|--|--|--|--|--|--|--|
|                                              | Average                                                                        | Min | Max | 98% percentile |  |  |  |  |  |  |  |  |  |
| <b>2. TEST</b> (2012. 07.17-30.)             | 17                                                                             | 12  | 23  | 23             |  |  |  |  |  |  |  |  |  |
| <b>3. Test</b> (2012. 10.12-26.)             | 30                                                                             | 23  | 40  | 39             |  |  |  |  |  |  |  |  |  |
| <b>4. TEST</b> (2012. 12. 28-2013.01.10.)    | 17                                                                             | 13  | 26  | 25             |  |  |  |  |  |  |  |  |  |
| <b>5.</b> TEST (2013. 03.14-28.) 16 12 23 23 |                                                                                |     |     |                |  |  |  |  |  |  |  |  |  |

Table 16.2.2-44: 5. LMp NO2 measurements/tests results



koncentráció - concentration, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-49: 5. LMp - NO2 daily average concentration

The measured NO<sub>2</sub> hourly values did not exceed the 100  $\mu$ g/m<sup>3</sup> hourly limit at the measuring point during the 2-week measurement process.

The highest NO<sub>2</sub> value was measured during the 3rd measuring period, on October 18, 2012 between 17.00-18.00 hours, the value was 51  $\mu$ g/m<sup>3</sup>.

The 24-hour limit was never exceeded during the measurements.

Bi-weekly average values of the NO<sub>2</sub> measurements were: 17 µg/m<sup>3</sup>, 30 µg/m<sup>3</sup>, 17 µg/m<sup>3</sup>, 16 µg/m<sup>3</sup>.

# NO<sub>x</sub> immission

|           | NO <sub>x</sub> concentration |        |       |                   |           |             |        |          |                   |                |                   |        |      |                   |           |             |      |      |                   |
|-----------|-------------------------------|--------|-------|-------------------|-----------|-------------|--------|----------|-------------------|----------------|-------------------|--------|------|-------------------|-----------|-------------|------|------|-------------------|
|           |                               |        |       |                   |           |             | Base   | d on dai | ly assessmen      | t hourly conce | entration va      | alues  |      |                   |           |             |      |      |                   |
|           | 2                             | . TEST |       |                   |           | 3           | . TEST |          |                   |                | 4                 | . Test |      |                   | 5. TEST   |             |      |      |                   |
| Measuring | Avera<br>ge                   | Min    | Max   | 98%<br>percentile | Measuring | Avera<br>ge | Min    | Max      | 98%<br>percentile | Measuring      | Averag<br>e       | Min    | Max  | 98%<br>percentile | Measuring | Avera<br>ge | Min  | Max  | 98%<br>percentile |
| penda     |                               | μ      | ıg/m³ | r                 | penod     |             |        | ug/m³    |                   | period         | μg/m <sup>3</sup> |        |      |                   | period    |             | μ    | g/m³ |                   |
| July17    | 10,8                          | 9,3    | 15,9  | 15,0              | Oct.13    | 38,4        | 27,9   | 51,3     | 51,0              | Dec.28         | 23,2              | 18,2   | 34,2 | 32,3              | March15   | 18,7        | 17,0 | 23,3 | 22,5              |
| July18    | 13,4                          | 10,3   | 20,5  | 19,4              | Oct.14    | 45,6        | 39,1   | 51,2     | 50,8              | Dec.29         | 26,8              | 18,6   | 44,3 | 43,7              | March16   | 19,1        | 16,1 | 28,3 | 27,6              |
| July19    | 16,2                          | 12,2   | 20,2  | 19,8              | Oct.15    | 49,8        | 34,6   | 70,0     | 67,9              | Dec.30         | 24,8              | 21,3   | 33,9 | 31,7              | March17   | 29,5        | 22,6 | 46,3 | 45,7              |
| July20    | 19,2                          | 12,8   | 32,0  | 29,9              | Oct.16    | 49,9        | 26,3   | 81,8     | 78,2              | Dec.31         | 34,1              | 25,2   | 56,1 | 54,6              | March18   | 32,0        | 21,6 | 44,9 | 42,9              |
| July21    | 12,2                          | 9,8    | 15,9  | 15,6              | Oct.17    | 31,6        | 23,3   | 45,1     | 41,4              | Jan.01         | 27,6              | 22,5   | 33,7 | 33,2              | March19   | 22,5        | 14,9 | 35,3 | 34,4              |
| July22    | 20,6                          | 12,1   | 38,1  | 38,1              | Oct.18    | 41,4        | 28,3   | 67,8     | 65,7              | Jan.02         | 34,0              | 23,7   | 82,3 | 79,1              | March20   | 22,5        | 16,7 | 39,4 | 38,2              |
| July23    | 14,0                          | 11,4   | 17,4  | 17,1              | Oct.19    | 43,8        | 32,7   | 58,7     | 56,1              | Jan.03         | 28,8              | 22,3   | 47,4 | 43,8              | March21   | 18,0        | 13,7 | 24,5 | 23,6              |
| July24    | 21,3                          | 17,6   | 29,3  | 28,5              | Oct.20    | 47,6        | 36,3   | 79,7     | 69,1              | Jan.04         | 22,8              | 20,5   | 27,3 | 26,7              | March22   | 16,9        | 15,4 | 18,4 | 18,3              |
| July25    | 30,6                          | 22,1   | 41,7  | 41,2              | Oct.21    | 41,1        | 33,9   | 54,4     | 52,1              | Jan.05         | 16,0              | 10,8   | 24,0 | 22,8              | March23   | 22,1        | 18,1 | 27,9 | 26,8              |
| July26    | 30,9                          | 19,8   | 46,0  | 45,3              | Oct.22    | 36,2        | 31,9   | 41,7     | 41,2              | Jan.06         | 12,1              | 10,8   | 14,7 | 14,6              | March24   | 17,4        | 14,6 | 22,4 | 22,4              |
| July27    | 26,5                          | 16,6   | 43,3  | 41,6              | Oct.23    | 39,4        | 31,6   | 46,7     | 46,5              | Jan.07         | 15,7              | 12,2   | 23,7 | 23,1              | March25   | 16,2        | 13,5 | 18,9 | 18,6              |
| July28    | 31,9                          | 18,3   | 56,1  | 54,6              | Oct.24    | 38,3        | 32,9   | 42,8     | 42,8              | Jan.08         | 17,5              | 12,3   | 27,0 | 25,2              | March26   | 16,2        | 13,8 | 18,6 | 18,6              |
| July29    | 22,5                          | 12,5   | 37,2  | 35,6              | Oct.25    | 37,3        | 29,7   | 46,3     | 45,4              | Jan.09         | 20,9              | 14,2   | 26,2 | 26,0              | March27   | 21,2        | 13,6 | 32,8 | 32,7              |
| July30    | 19,9                          | 11,5   | 37,2  | 36,0              | Oct.26    | 39,8        | 28,6   | 56,3     | 55,8              | Jan.10         | 25,2              | 19,4   | 34,2 | 32,6              | March28   | 25,1        | 21,0 | 31,5 | 31,3              |
| Average   | 21                            | 14     | 32    | 31                |           | 41          | 31     | 57       | 55                |                | 23                | 18     | 36   | 35                |           | 21          | 17   | 29   | 29                |

#### Comment:

The measurement was suspended on July 23, 2012 between 10.00 – 12.00 hours due to calibration. The measurement was suspended on October 18, 2012 between 10.00-11.00 hours due to calibration.

The measurement was suspended on January 2, 2013 between 11.00-12.00 hours due to calibration. The measurement was suspended on March 18, 2013 between 11.00-12.00 hours due to calibration.

Table 16.2.2-45: 5. LMp on-the-spot measurements/tests – NOx





koncentráció - concentration, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-50: 5. LMp - NO<sub>x</sub> hourly run-off curves

| NO<br>Based on H                             | NO <sub>x</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |     |     |                |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------|-----|-----|----------------|--|--|--|--|--|--|--|--|--|
|                                              | Average                                                                        | Min | Max | 98% percentile |  |  |  |  |  |  |  |  |  |
| <b>2. TEST</b> (2012. 07.17-30.)             | 21                                                                             | 14  | 32  | 31             |  |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012. 10.12-26.)             | 41                                                                             | 31  | 57  | 55             |  |  |  |  |  |  |  |  |  |
| <b>4. TEST</b> (2012. 12. 28-2013.01.10.)    | 23                                                                             | 18  | 36  | 35             |  |  |  |  |  |  |  |  |  |
| <b>5.</b> TEST (2013. 03.14-28.) 21 17 29 29 |                                                                                |     |     |                |  |  |  |  |  |  |  |  |  |

Table 16.2.2-46: 5. LMp NO<sub>x</sub> measurements/tests results



koncentráció - concentration, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-51: 5. LMp - NOx daily average concentration

Decree 4/2011. (I. 14.) VM defines no immission limit for NO<sub>x</sub>. The former decree defined for NO<sub>x</sub> a 200  $\mu$ g/m<sup>3</sup> hourly limit, and 150  $\mu$ g/m<sup>3</sup> 24-hour limit but these limits were never exceeded during the 4-times two-week measurement process based on the hourly measurement values.

The highest NO<sub>x</sub> value was measured during the 4th measuring period after the calibration on January 2, 2013 between 12.00-13.00 hours, and on October 16, 2012, between 11.00-12.00 a.m., the value was in both days  $82 \ \mu g/m^3$ .

Bi-weekly average values of the NO<sub>x</sub> measurements were: 20,7 µg/m<sup>3</sup>, 41,4 µg/m<sup>3</sup>, 23,5 µg/m<sup>3</sup>, 21,2 µg/m<sup>3</sup>.
### SO<sub>2</sub> immission

| SO <sub>2</sub> concentration |             |        |       |                   |           |             |        |          |                   |                |                   |        |     |                   |           |             |        |     |                   |
|-------------------------------|-------------|--------|-------|-------------------|-----------|-------------|--------|----------|-------------------|----------------|-------------------|--------|-----|-------------------|-----------|-------------|--------|-----|-------------------|
|                               |             |        |       |                   |           |             | Base   | d on dai | ly assessmen      | t hourly conce | entration va      | alues  |     |                   |           |             |        |     |                   |
|                               | 2           | . Test |       |                   |           | 3           | . Test |          |                   |                | 4                 | . Test |     |                   |           | 5           | . Test |     |                   |
| Measuring                     | Avera<br>ge | Min    | Max   | 98%<br>percentile | Measuring | Avera<br>ge | Min    | Max      | 98%<br>percentile | Measuring      | Aver-<br>age      | Min    | Max | 98%<br>percentile | Measuring | Avera<br>ge | Min    | Max | 98%<br>percentile |
| period                        |             | μ      | ıg/m³ | r                 | penou     |             | ۱      | ıg/m³    |                   | penou          | μg/m <sup>3</sup> |        |     | penod             |           | μ           | g/m³   |     |                   |
| July17                        | 1,0         | 0,7    | 1,5   | 1,5               | Oct.13    | 0,9         | 0,5    | 1,2      | 1,2               | Dec.28         | 4,0               | 3,5    | 4,7 | 4,7               | March15   | 4,5         | 4,2    | 4,8 | 4,8               |
| July18                        | 0,9         | 0,7    | 1,3   | 1,3               | Oct.14    | 1,0         | 0,9    | 1,3      | 1,3               | Dec.29         | 4,3               | 3,6    | 4,7 | 4,7               | March16   | 4,3         | 3,9    | 4,7 | 4,7               |
| July19                        | 0,9         | 0,7    | 1,4   | 1,4               | Oct.15    | 0,7         | 0,4    | 1,0      | 1,0               | Dec.30         | 4,7               | 4,3    | 6,2 | 6,0               | March17   | 4,4         | 3,2    | 5,0 | 5,0               |
| July20                        | 1,0         | 0,7    | 1,4   | 1,4               | Oct.16    | 1,2         | 0,5    | 3,1      | 3,0               | Dec.31         | 4,3               | 3,7    | 4,8 | 4,8               | March18   | 4,3         | 3,5    | 4,9 | 4,9               |
| July21                        | 1,6         | 0,7    | 2,2   | 2,2               | Oct.17    | 0,6         | 0,4    | 1,7      | 1,4               | Jan.01         | 4,5               | 4,1    | 5,1 | 5,1               | March19   | 4,1         | 2,8    | 5,3 | 5,3               |
| July22                        | 0,8         | 0,7    | 1,4   | 1,2               | Oct.18    | 1,2         | 0,4    | 2,0      | 2,0               | Jan.02         | 4,2               | 3,7    | 5,3 | 4,9               | March20   | 4,2         | 2,9    | 5,1 | 5,1               |
| July23                        | 1,1         | 0,7    | 1,9   | 1,9               | Oct.19    | 1,0         | 0,4    | 1,7      | 1,7               | Jan.03         | 4,3               | 4,0    | 4,5 | 4,5               | March21   | 4,3         | 3,9    | 4,8 | 4,8               |
| July24                        | 0,9         | 0,7    | 1,4   | 1,4               | Oct.20    | 1,1         | 0,4    | 1,7      | 1,7               | Jan.04         | 4,2               | 4,0    | 5,0 | 5,0               | March22   | 4,4         | 4,1    | 4,7 | 4,7               |
| July25                        | 0,7         | 0,7    | 0,9   | 0,8               | Oct.21    | 0,9         | 0,4    | 1,8      | 1,7               | Jan.05         | 4,1               | 3,5    | 4,5 | 4,5               | March23   | 4,5         | 4,2    | 5,0 | 5,0               |
| July26                        | 0,7         | 0,7    | 0,7   | 0,7               | Oct.22    | 1,0         | 0,4    | 2,1      | 2,0               | Jan.06         | 4,3               | 3,9    | 4,6 | 4,6               | March24   | 4,2         | 3,6    | 4,5 | 4,5               |
| July27                        | 0,7         | 0,7    | 0,7   | 0,7               | Oct.23    | 1,0         | 0,4    | 1,7      | 1,7               | Jan.07         | 4,2               | 3,5    | 4,9 | 4,9               | March25   | 4,3         | 4,2    | 4,7 | 4,7               |
| July28                        | 0,7         | 0,7    | 0,8   | 0,8               | Oct.24    | 0,9         | 0,5    | 1,2      | 1,2               | Jan.08         | 4,3               | 3,9    | 4,6 | 4,6               | March26   | 4,3         | 3,8    | 4,6 | 4,6               |
| July29                        | 0,8         | 0,7    | 1,0   | 1,0               | Oct.25    | 1,0         | 0,5    | 1,4      | 1,4               | Jan.09         | 4,1               | 3,8    | 4,6 | 4,6               | March27   | 4,5         | 4,1    | 4,7 | 4,7               |
| July30                        | 0,7         | 0,7    | 0,9   | 0,9               | Oct.26    | 0,9         | 0,4    | 1,8      | 1,7               | Jan.10         | 4,2               | 3,9    | 4,4 | 4,4               | March28   | 4,5         | 3,7    | 5,3 | 5,3               |
| Average                       | 1           | 1      | 1     | 1                 |           | 1           | 0      | 2        | 2                 |                | 4                 | 4      | 5   | 5                 |           | 4           | 4      | 5   | 5                 |

#### Comment:

The measurement was suspended on July 23, 2012 between 10.00 – 12.00 hours due to calibration. The measurement was suspended on October 18, 2012 between 10.00-11.00 hours due to calibration.

The measurement was suspended on January 2, 2013 between 11.00-12.00 hours due to calibration. The measurement was suspended on March 18, 2013 between 11.00-12.00 hours due to calibration.

Table 16.2.2-47: 5. LMp on-the-spot measurements/tests – SO2





koncentráció - concentration, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-52: 5. LMp - SO<sub>2</sub> hourly run-off curves

| SO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m <sup>3</sup> ) |   |   |   |   |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|---|---|---|---|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                                              |   |   |   |   |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 07.17-30.)                                                            | 1 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| <b>3. Test</b> (2012. 10.12-26.)                                                            | 1 | 0 | 2 | 2 |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2012. 12. 28-2013.01.10.) 4 4 5 5                                           |   |   |   |   |  |  |  |  |  |  |  |  |  |
| <b>5.</b> TEST (2013. 03.14-28.) 4 4 5 5                                                    |   |   |   |   |  |  |  |  |  |  |  |  |  |

Table 16.2.2-48: 5. LMp SO<sub>2</sub> measurements/tests results



koncentráció - concentration, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-53: 5. LMp – SO<sub>2</sub> daily average concentration

The measured hourly SO<sub>2</sub> values were well below the 250  $\mu$ g/m<sup>3</sup> hourly limit.

The highest concentration was measured during the 4th measurement period on December 30, 2012 between 12.00-13.00 hours, the value 6,2 was  $\mu$ g/m<sup>3</sup>, 2,%% of the hourly limit.

The 24-hour average concentration values were also well below the 125  $\mu$ g/m<sup>3</sup> daily limit.

Bi-weekly average values of the SO<sub>2</sub> measurements were: 1 µg/m<sup>3</sup>, 1 µg/m<sup>3</sup>, 4 µg/m<sup>3</sup>, 4 µg/m<sup>3</sup>.

#### CO immission

|           | CO concentration |         |                |                |           |         |         |            |                   |              |            |            |        |                |           |         |             |        |                   |
|-----------|------------------|---------|----------------|----------------|-----------|---------|---------|------------|-------------------|--------------|------------|------------|--------|----------------|-----------|---------|-------------|--------|-------------------|
|           |                  |         |                |                | _         |         | Bas     | sed on dai | ly assessmen      | t hourly con | centratior | n values * |        |                | _         |         |             |        |                   |
|           | 2                | 2. Test |                |                |           |         | 3. TEST |            |                   |              |            | 4. Test    |        |                |           |         | 5. Test     |        |                   |
| Measuring | Average          | Min     | Max            | 98%<br>percent | Measuring | Average | Min     | Max        | 98%<br>percentile | Measuring    | Average    | Min        | Max    | 98%<br>percent | Measuring | Average | Min         | Max    | 98%<br>percentile |
| period    |                  | μg/     | m <sup>3</sup> | 1              | period    |         |         | µg/m³      |                   | period       |            | μ          | /m³    | r              | period    |         | μ           | g/m³   |                   |
| July17    | 185,9            | 63,0    | 469,0          | 426,2          | Oct.13    | 663,5   | 369,0   | 1142,0     | 1020,6            | Dec.28       | 711,0      | 429,0      | 1184,0 | 1096,6         | March15   | 324,0   | 90,0        | 928,0  | 870,0             |
| July18    | 334,3            | 258,0   | 424,0          | 423,5          | Oct.14    | 623,6   | 361,0   | 802,0      | 800,2             | Dec.29       | 755,7      | 365,0      | 1147,0 | 1138,7         | March16   | 245,8   | 90,0        | 828,0  | 684,5             |
| July19    | 229,5            | 117,0   | 519,0          | 502,0          | Oct.15    | 434,9   | 217,0   | 671,0      | 627,3             | Dec.30       | 608,9      | 210,0      | 1171,0 | 1133,7         | March17   | 515,4   | 257,0       | 1208,0 | 1111,9            |
| July20    | 219,4            | 117,0   | 356,0          | 338,1          | Oct.16    | 386,0   | 188,0   | 625,0      | 617,1             | Dec.31       | 815,5      | 495,0      | 1520,0 | 1423,4         | March18   | 491,3   | 215,0       | 1183,0 | 1046,6            |
| July21    | 163,5            | 96,0    | 251,0          | 239,5          | Oct.17    | 374,2   | 126,0   | 692,0      | 679,6             | Jan.01       | 662,6      | 254,0      | 1279,0 | 1110,6         | March19   | 526,5   | 101,0       | 922,0  | 869,6             |
| July22    | 232,2            | 128,0   | 398,0          | 380,5          | Oct.18    | 406,3   | 128,0   | 1127,0     | 1028,9            | Jan.02       | 864,6      | 369,0      | 1305,0 | 1258,4         | March20   | 395,5   | 123,0       | 969,0  | 934,5             |
| July23    | 181,3            | 73,0    | 319,0          | 297,6          | Oct.19    | 433,5   | 145,0   | 806,0      | 770,1             | Jan.03       | 877,0      | 474,0      | 1244,0 | 1234,8         | March21   | 209,9   | 68,0        | 398,0  | 393,9             |
| July24    | 276,6            | 172,0   | 458,0          | 439,6          | Oct.20    | 342,6   | 115,0   | 663,0      | 654,3             | Jan.04       | 521,9      | 125,0      | 1242,0 | 1212,6         | March22   | 304,1   | 102,0       | 587,0  | 560,3             |
| July25    | 266,2            | 107,0   | 754,0          | 704,8          | Oct.21    | 360,8   | 135,0   | 669,0      | 653,4             | Jan.05       | 678,8      | 212,0      | 1253,0 | 1176,6         | March23   | 276,4   | 118,0       | 584,0  | 531,1             |
| July26    | 222,6            | 107,0   | 484,0          | 415,5          | Oct.22    | 273,3   | 80,0    | 800,0      | 753,1             | Jan.06       | 557,7      | 159,0      | 1400,0 | 1320,0         | March24   | 532,8   | 144,0       | 978,0  | 852,4             |
| July27    | 185,6            | 72,0    | 605,0          | 515,8          | Oct.23    | 292,2   | 115,0   | 695,0      | 665,6             | Jan.07       | 736,3      | 170,0      | 1386,0 | 1359,8         | March25   | 526,0   | 304,0       | 667,0  | 662,9             |
| July28    | 256,8            | 129,0   | 525,0          | 472,1          | Oct.24    | 385,6   | 118,0   | 726,0      | 695,6             | Jan.08       | 696,6      | 307,0      | 1387,0 | 1280,7         | March26   | 443,8   | 158,0       | 726,0  | 713,1             |
| July29    | 170,9            | 67,0    | 396,0          | 349,1          | Oct.25    | 335,1   | 145,0   | 590,0      | 542,2             | Jan.09       | 621,6      | 220,0      | 1138,0 | 1118,7         | March27   | 382,8   | 123,0       | 946,0  | 941,9             |
| July30    | 222,0            | 105,0   | 556,0          | 527,9          | Oct.26    | 431,1   | 173,0   | 991,0      | 943,6             | Jan.10       | 590,7      | 162,0      | 1261,0 | 1157,0         | March28   | 452,3   | 126,0       | 954,0  | 913,5             |
|           |                  |         |                |                |           |         |         |            | 7<br>4<br>6       |              |            |            |        |                |           |         | 1<br>4<br>4 |        | 7<br>9<br>2       |

Comment:

\* Maximum of daily 8-hour moving average concentrations. The maximum value shall be selected among the 8-hour moving average values calculated on the basis of the hourly averages. The 8-hour average values that were so calculated shall refer to those days, on which the 8-hour period ends, thus the first test period of any day will last from 17 hours of the previous day until 01 hour of the given day. The last test on any day will last from 16 to 24 hours within the given day. The measurement was suspended on July 23, 2012 between 10.00 – 12.00 hours due to calibration.

The measurement was suspended on October 16, 2012 between 14.00-19.00 hours due to instrument breakdown, and on October 18 between 10.00-11.00 hours due to calibration.

The measurement was suspended on January 2, 2013 between 11.00-12.00 hours due to calibration.

The measurement was suspended on March 18, 2013 between 11.00-12.00 hours due to calibration.

Table 16.2.2-49: 5. LMp on-the-spot measurements/tests - CO



The following figure presents the CO concentration hourly test values:

koncentráció - concentration, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-54: 5. LMp - CO hourly run-off curves

| CO concentration<br>Based on hourly measurement values<br>(µg/m³) |     |     |     |     |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                    |     |     |     |     |  |  |  |  |  |  |  |  |  |
| <b>2. TEST (</b> 2012. 07.17-30.)                                 | 306 | 196 | 409 | 402 |  |  |  |  |  |  |  |  |  |
| <b>3. TEST (</b> 2012. 10.12-26.)                                 | 567 | 383 | 742 | 735 |  |  |  |  |  |  |  |  |  |
| <b>4. TEST (</b> 2012. 12. 28-2013.01.10.) 909 710 1109 1097      |     |     |     |     |  |  |  |  |  |  |  |  |  |
| <b>5.</b> TEST (2013. 03.14-28.) 595 456 757 753                  |     |     |     |     |  |  |  |  |  |  |  |  |  |

Table 16.2.2-50: 5. LMp CO measurements/tests results



koncentráció - concentration, 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-55: 5. LMp - CO daily average concentration

The hourly CO immission values were below the 10 000  $\mu$ g/m<sup>3</sup> hourly limit.

During the 4 times 2-2-week test series the highest concentration was measured during the 4<sup>th</sup> test on December 31, 2012 between 17.00-18.00 hours. The concentration value was 1520  $\mu$ g/m<sup>3</sup>, as 15% of the hourly limit.

The maximum of the 8-hour moving average values was lower than 20% of the 24-hour limit (5 000 µg/m<sup>3</sup>).

Bi-weekly average values of the CO measurements were: 306 µg/m<sup>3</sup>, 567 µg/m<sup>3</sup>, 909 µg/m<sup>3</sup>, 595 µg/m<sup>3</sup>.

#### PM<sub>10</sub>, TSPM 24-hour concentration

| Measuring | <b>PM</b> 10 | TSPM           | Measuring | PM <sub>10</sub> TSPM |                | Measuring | <b>PM</b> 10 | TSPM | Measuring | <b>PM</b> 10 | TSPM |
|-----------|--------------|----------------|-----------|-----------------------|----------------|-----------|--------------|------|-----------|--------------|------|
| period    | µg/i         | m <sup>3</sup> | period    | µg/n                  | n <sup>3</sup> | period    | μg           | /m³  | period    | μg           | /m³  |
| July17    | 11           | 17             | Oct.13    | 32                    | 38             | Dec.28    | 16           | 18   | March15   | 39           | 66   |
| July18    | 17           | 42             | Oct.14    | 46                    | 53             | Dec.29    | 30           | 32   | March16   | 16           | 23   |
| July19    | 27           | 73             | Oct.15    | 41                    | 43             | Dec.30    | 37           | 38   | March17   | 28           | 37   |
| July20    | 28           | 84             | Oct.16    | 19                    | 20             | Dec.31    | 62           | 64   | March18   | 30           | 45   |
| July21    | 12           | 32             | Oct.17    | 17                    | 21             | Jan.01    | 47           | 49   | March19   | 16           | 17   |
| July22    | 15           | 17             | Oct.18    | 30                    | 37             | Jan.02    | 47           | 48   | March20   | 25           | 30   |
| July23    | 17           | 35             | Oct.19    | 42                    | 47             | Jan.03    | 39           | 44   | March21   | 19           | 19   |
| July24    | 22           | 34             | Oct.20    | 48                    | 50             | Jan.04    | 13           | 17   | March22   | 26           | 32   |
| July25    | 19           | 21             | Oct.21    | 32                    | 40             | Jan.05    | 7            | 8    | March23   | 35           | 45   |
| July26    | 21           | 25             | Oct.22    | 26                    | 29             | Jan.06    | 12           | 13   | March24   | 18           | 25   |
| July27    | 19           | 21             | Oct.23    | 53                    | 55             | Jan.07    | 29           | 30   | March25   | 16           | 34   |
| July28    | 20           | 28             | Oct.24    | 48                    | 49             | Jan.08    | 27           | 29   | March26   | 20           | 23   |
| July29    | 21           | 31             | Oct.25    | 41                    | 42             | Jan.09    | 48           | 50   | March27   | 42           | 45   |
| July30    | 16           | 18             | Oct.26    | 44                    | 49             | Jan.10    | 59           | 60   | March28   | 33           | 35   |
| min       | 11           | 17             |           | 17                    | 20             |           | 7            | 8    |           | 16           | 17   |
| max       | 28           | 84             |           | 53                    | 55             |           | 62           | 64   |           | 42           | 66   |
| Average   | 19           | 34             |           | 37                    | 41             |           | 34           | 36   |           | 26           | 34   |

Table 16.2.2-51: 5. LMp on-the-spot measurements/tests – PM<sub>10</sub>, TSPM

- TSPM

– PM10 Határérték

0H.22

Ŷ 04.24

\*

ŕ





koncentráció - concentration, mérési időszak - measurement period, dátum - date, határérték - limit

Figure 16.2.2-56: 5. LMp - PM<sub>10</sub> and a TSPM daily run-off curves

The 24-hour average and maximum  $PM_{10}$  values measured during the <u>1st and 4th measuring period</u> did not exceed the 24-hour limit. The PM<sub>10</sub> value measured during the <u>2nd measuring period</u> was on 1 day higher than the 24-hour limit. The value exceeded the limit on October 23 and it was 53 µg/m<sup>3</sup>, 6% of the 24-hour limit. The PM<sub>10</sub> value measured during the <u>3rd measuring period</u> was on 2 days higher than the 24-hour limit. The value was higher than the limit on December 31 and January 10, with values 62 µg/m<sup>3</sup> and 59 µg/m<sup>3</sup>, representing 24 % and 18 % of the 24-hour limit, respectively. Automatic measuring stations operating in the he southern regions of the country also measured values higher than the limit during this period.

Based on the **TSPM** measurement results we can state that (as there is no valid limit at present) the measured values were not higher than the 24-hour limit (100  $\mu$ g/m<sup>3</sup>) defined by the formerly effective Decree 14/2001.(V.9.) KöM-EüM-FVM.

| Settling dust concentration |            |                         |  |  |  |  |  |  |  |  |  |  |
|-----------------------------|------------|-------------------------|--|--|--|--|--|--|--|--|--|--|
| First days                  | Last days  | g/m <sup>2</sup> x30nap |  |  |  |  |  |  |  |  |  |  |
| 2012.01.23                  | 2012.02.23 | 0,5                     |  |  |  |  |  |  |  |  |  |  |
| 2012.02.23                  | 2012.03.28 | 1,3                     |  |  |  |  |  |  |  |  |  |  |
| 2012.03.28                  | 2012.04.26 | 3,2                     |  |  |  |  |  |  |  |  |  |  |
| 2012.04.26                  | 2012.05.22 | 5,1                     |  |  |  |  |  |  |  |  |  |  |
| 2012.05.22                  | 2012.06.25 | 3,3                     |  |  |  |  |  |  |  |  |  |  |
| 2012.06.25                  | 2012.07.31 | 4,3                     |  |  |  |  |  |  |  |  |  |  |
| 2012.07.31                  | 2012.08.30 | 4,8<br>2,1*             |  |  |  |  |  |  |  |  |  |  |
| 2012.09.11                  | 2012.10.12 | 2,8<br>4,7*             |  |  |  |  |  |  |  |  |  |  |
| 2012.10.12                  | 2012.11.12 | 1,5*                    |  |  |  |  |  |  |  |  |  |  |
| 2012.11.12                  | 2012.12.12 | 1,3*                    |  |  |  |  |  |  |  |  |  |  |
| 2012.12.12                  | 2013.01.11 | 1,2*                    |  |  |  |  |  |  |  |  |  |  |
| 2013.01.11                  | 2013.02.12 | 3,5*                    |  |  |  |  |  |  |  |  |  |  |
| 2013.02.25                  | 2013.03.29 | 1,2*                    |  |  |  |  |  |  |  |  |  |  |

## Settling dust

\*Dunaszentbenedek, Rózsa street

Table 16.2.2-52: 5. LMp on-the-spot measurements/tests – settling dust

Measurements/tests were held at both measuring points at Dunaszentbenedek, at the Dam keeper house and in Rózsa street between July 31 and October 12, 2012. As during the parallel tests the settling dust load was low at both measuring points, and the original task required that the settling dust test is performed at the same point as the other air pollution measurements/tests are held, there was no professional reason for continuing the settling dust test at Dam keeper house.

**Settling dust** measurement results were not higher than the 16 g/m<sup>2</sup> x 30-day limit defined by Decree 14/2001.(V.9.) KöM-EüM-FVM (the presently effective Decree defines no limit), and the highest value measured was 32 % of the limit.

## 16.2.2.5.6 Paks, Dankó Pista street 1. OVIT site - 6. LMp



mérés- measurement/test source : Google Earth Figure 16.2.2-57: 6. LMp locatione



1. TEST



2. TEST



3. TEST



4. TEST



SETTLING DUST SAMPLING UNITS

Figure 16.2.2-58: Location of testing truck and settling dust sampling units at 6 LMp site

#### NO<sub>2</sub> immission

| NO <sub>2</sub> concentration |             |        |                  |                   |           |             |         |                  |                   |                |              |        |        |                   |               |                 |         |     |                   |
|-------------------------------|-------------|--------|------------------|-------------------|-----------|-------------|---------|------------------|-------------------|----------------|--------------|--------|--------|-------------------|---------------|-----------------|---------|-----|-------------------|
|                               |             |        |                  |                   |           |             | Base    | d on dai         | ily assessmer     | t hourly conce | entration va | alues  |        |                   |               |                 |         |     |                   |
|                               | 1           | . Test |                  |                   |           | 2           | 2. TEST |                  |                   |                | 3            | . Test |        |                   |               | 4               | I. TEST |     |                   |
| Measurin<br>a period          | Avera<br>ge | Min    | Max              | 98%<br>percentile | Measuring | Averag<br>e | Min     | Max              | 98%<br>percentile | Measuring      | Averag<br>e  | Min    | Max    | 98%<br>percentile | Measuri<br>ng | Average         | Min     | Max | 98%<br>percentile |
|                               |             | μ      | g/m <sup>3</sup> |                   |           |             | μ       | g/m <sup>3</sup> |                   | P              | µg/m³        |        | period |                   | μg            | /m <sup>3</sup> |         |     |                   |
| Apr.06                        | 25          | 18     | 36               | 35                | June 26   | 14          | 11      | 23               | 23                | Oct.28         | 20           | 15     | 31     | 29                | Jan.29        | 30              | 16      | 103 | 87                |
| Apr.07                        | 22          | 15     | 27               | 27                | June 27   | 17          | 12      | 33               | 32                | Oct.29         | 21           | 13     | 34     | 34                | Jan.30        | 24              | 14      | 43  | 42                |
| Apr.08                        | 12          | 10     | 18               | 17                | June 28   | 22          | 12      | 51               | 46                | Oct.30         | 21           | 15     | 31     | 30                | Jan.31        | 18              | 12      | 35  | 32                |
| Apr.09                        | 16          | 10     | 28               | 27                | June 29   | 26          | 18      | 49               | 44                | Oct.31         | 26           | 16     | 37     | 37                | Febr.01       | 26              | 11      | 141 | 119               |
| Apr.10                        | 33          | 16     | 137              | 122               | June 30   | 31          | 16      | 94               | 83                | Nov.01         | 23           | 18     | 31     | 29                | Febr.02       | 16              | 14      | 24  | 22                |
| Apr.11                        | 29          | 14     | 71               | 67                | July01    | 30          | 19      | 60               | 53                | Nov.02         | 33           | 25     | 54     | 50                | Febr.03       | 11              | 9       | 13  | 13                |
| Apr.12                        | 24          | 11     | 62               | 58                | July02    | 30          | 24      | 44               | 42                | Nov.03         | 24           | 20     | 30     | 29                | Febr.04       | 22              | 10      | 47  | 44                |
| Apr.13                        | 28          | 15     | 63               | 56                | July03    | 27          | 17      | 57               | 55                | Nov.04         | 28           | 24     | 34     | 33                | Febr.05       | 26              | 13      | 76  | 75                |
| Apr.14                        | 19          | 13     | 24               | 24                | July04    | 30          | 19      | 61               | 60                | Nov.05         | 29           | 21     | 42     | 39                | Febr.06       | 30              | 13      | 90  | 82                |
| Apr.15                        | 20          | 14     | 28               | 28                | July05    | 26          | 17      | 41               | 37                | Nov.06         | 35           | 18     | 158    | 124               | Febr.07       | 17              | 13      | 26  | 25                |
| Apr.16                        | 20          | 14     | 37               | 33                | July06    | 30          | 16      | 79               | 61                | Nov.07         | 26           | 19     | 42     | 42                | Febr.08       | 21              | 14      | 33  | 31                |
| Apr.17                        | 19          | 12     | 29               | 27                | July07    | 21          | 16      | 31               | 30                | Nov.08         | 34           | 20     | 79     | 68                | Febr.09       | 26              | 19      | 35  | 35                |
| Apr.18                        | 25          | 16     | 58               | 57                | July08    | 20          | 15      | 34               | 31                | Nov.09         | 35           | 24     | 64     | 59                | Febr.10       | 20              | 16      | 28  | 26                |
| Apr.19                        | 31          | 17     | 79               | 78                | July09    | 19          | 16      | 27               | 26                | Nov.10         | 38           | 29     | 73     | 66                | Febr.11       | 29              | 15      | 104 | 81                |
| Averag<br>e                   | 23          | 14     | 50               | 47                |           | 25          | 16      | 49               | 45                |                | 28           | 20     | 53     | 48                |               | 23              | 13      | 57  | 51                |

Comment:

The measurement was suspended on April 12, 2012 between 11.00 – 12.00 a.m. due to calibration, and on April 19, 2012 between 15.00 – 16.00 and 16.00 – 17.00 p.m. due to maintenance.

The measurement was suspended on July 2, 2012 between 10.00-12.00 a.m. due to calibration. The measurement was suspended on November 5, 2012 between 11.00-12.00 a.m. due to calibration.

The measurement was suspended on February 4, 2013 between 10.00-11.00 a.m. due to calibration.

Table 16.2.2-53: 6. LMp on-the-spot measurements/tests – NO2

### The following figures present the NO<sub>2</sub> concentration hourly values:



koncentráció - concentration, OVIT telep, Dankó Pista út 1. - Paks, Dankó Pista street 1. OVIT site, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-59: 6. LMp - NO2 hourly run-off curves

| NO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m <sup>3</sup> ) |    |    |    |    |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|----|----|----|----|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                                              |    |    |    |    |  |  |  |  |  |  |  |  |  |
| <b>1. TEST</b> (2012. 04. 06-04.19.)                                                        | 23 | 14 | 50 | 47 |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 06. 26-07.09.)                                                        | 25 | 16 | 49 | 45 |  |  |  |  |  |  |  |  |  |
| <b>3.</b> TEST (2012. 10. 28-11.10.) 28 20 53 48                                            |    |    |    |    |  |  |  |  |  |  |  |  |  |
| 4. TEST (2013. 01.29 02.11.) 23 13 57 51                                                    |    |    |    |    |  |  |  |  |  |  |  |  |  |

Table 16.2.2-54: 6. LMp NO2 measurements/tests results



koncentráció - concentration, OVIT telep, Dankó Pista út 1. - Paks, Dankó Pista street 1. OVIT site , 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-60: 6. LMp - NO<sub>2</sub> daily average concentration

Hourly values measured at 6. LMp were 4 times, and during the 2-week period total 6 times higher than the 100  $\mu$ g/m<sup>3</sup> hourly limit, and during the 1st measuring period twice, the 3rd once and 4th three times.

Diagrams of the measured  $NO_2$  values can well characterise the daily volatility. In the morning between 05.00-10.00 hours significant  $NO_2$  concentration increase could be seen, and values exceeding the limit also emerged during this period. In the evening between 20.00-24.00 hours slight increase was detected in concentration. The cause of repeated increase in air pollution was the traffic.

The limit exceeding values were 3-58% higher than the permitted level.

The highest hourly NO<sub>2</sub> value was measured during the 3rd measuring period, on November 6, 2012 between 08.00-09.00 a.m., its value was 158  $\mu$ g/m<sup>3</sup>.

The 24-hour limit was never exceeded.

Bi-weekly average values of the 2-week NO<sub>2</sub> measurements were: 23 µg/m<sup>3</sup>, 25 µg/m<sup>3</sup>, 28 µg/m<sup>3</sup>, 23 µg/m.

Based on the run-off curves of the NO<sub>2</sub> measurement results we can state that the volatility does not follow in line with the heating-non-heating seasons, and changes can presumably reflect the impacts of local and target-based traffic.

#### NO<sub>x</sub> immission

|           | NO <sub>x</sub> concentration |        |       |                   |           |         |      |           |                   |                |              |      |       |                |           |         |        |       |                   |
|-----------|-------------------------------|--------|-------|-------------------|-----------|---------|------|-----------|-------------------|----------------|--------------|------|-------|----------------|-----------|---------|--------|-------|-------------------|
|           |                               |        |       |                   |           |         | Base | d on dail | y assessmen       | t hourly conce | entration va | lues |       |                |           |         |        |       |                   |
|           | 1                             | . Test |       |                   |           | 2       | TEST |           |                   |                | 3.           | TEST |       |                |           | 4       | . Test |       |                   |
| Measuring | Average                       | Min    | Max   | 98%<br>percentile | Measuring | Average | Min  | Max       | 98%<br>percentile | Measuring      | Average      | Min  | Max   | 98% percentile | Measuring | Average | Min    | Max   | 98%<br>percentile |
| penod     |                               |        | µg/m³ |                   | penod     |         |      | µg/m³     |                   | penod          | µg/m³        |      |       | penou          |           |         | µg/m³  |       |                   |
| Apr.06    | 27,1                          | 20,1   | 40,8  | 38,6              | June 26   | 16,1    | 12,6 | 25,0      | 24,5              | Oct.28         | 24,5         | 18,1 | 45,2  | 41,6           | Jan.29    | 38,9    | 20,3   | 159,8 | 133,3             |
| Apr.07    | 23,6                          | 16,9   | 30,3  | 29,3              | June 27   | 19,4    | 13,9 | 36,4      | 36,0              | Oct.29         | 23,9         | 13,4 | 46,2  | 43,9           | Jan.30    | 30,9    | 18,6   | 55,7  | 52,7              |
| Apr.08    | 14,2                          | 12,3   | 19,9  | 19,0              | June 28   | 25,8    | 13,0 | 60,3      | 56,9              | Oct.30         | 23,2         | 15,4 | 35,2  | 35,1           | Jan.31    | 23,3    | 16,1   | 41,3  | 37,4              |
| Apr.09    | 17,9                          | 12,3   | 30,7  | 29,4              | June 29   | 32,0    | 20,0 | 60,6      | 55,3              | Oct.31         | 30,9         | 16,2 | 45,9  | 45,8           | Febr.01   | 36,3    | 15,0   | 223,7 | 183,0             |
| Apr.10    | 43,0                          | 17,8   | 227,0 | 200,8             | June 30   | 39,0    | 17,8 | 119,2     | 107,7             | Nov.01         | 28,1         | 20,7 | 40,9  | 39,6           | Febr.02   | 20,9    | 17,6   | 32,6  | 29,6              |
| Apr.11    | 34,5                          | 15,7   | 99,0  | 88,0              | July01    | 38,7    | 20,5 | 74,1      | 68,9              | Nov.02         | 47,2         | 31,1 | 86,0  | 75,7           | Febr.03   | 15,1    | 13,5   | 18,3  | 17,8              |
| Apr.12    | 28,1                          | 13,1   | 84,3  | 75,5              | July02    | 38,0    | 27,6 | 56,3      | 54,4              | Nov.03         | 31,6         | 25,9 | 39,9  | 38,9           | Febr.04   | 30,0    | 13,8   | 68,1  | 63,0              |
| Apr.13    | 32,9                          | 17,0   | 89,4  | 77,3              | July03    | 31,2    | 18,6 | 66,7      | 64,7              | Nov.04         | 38,0         | 31,4 | 47,9  | 46,2           | Febr.05   | 34,4    | 17,3   | 112,8 | 111,3             |
| Apr.14    | 21,2                          | 15,1   | 26,4  | 25,9              | July04    | 36,0    | 20,4 | 78,4      | 76,7              | Nov.05         | 39,9         | 26,6 | 60,9  | 56,4           | Febr.06   | 39,6    | 17,1   | 129,8 | 117,6             |
| Apr.15    | 22,3                          | 15,5   | 30,0  | 29,5              | July05    | 30,3    | 18,3 | 48,6      | 45,4              | Nov.06         | 49,4         | 22,1 | 275,5 | 211,2          | Febr.07   | 22,3    | 17,3   | 35,4  | 33,4              |
| Apr.16    | 22,6                          | 16,3   | 45,6  | 40,1              | July06    | 35,8    | 17,7 | 119,8     | 86,8              | Nov.07         | 31,6         | 23,1 | 58,0  | 55,5           | Febr.08   | 26,4    | 18,4   | 46,1  | 42,3              |
| Apr.17    | 20,9                          | 14,7   | 31,2  | 29,3              | July07    | 23,4    | 17,6 | 35,8      | 34,4              | Nov.08         | 44,2         | 24,2 | 125,1 | 100,4          | Febr.09   | 31,5    | 22,8   | 43,7  | 42,9              |
| Apr.18    | 28,9                          | 17,8   | 81,8  | 74,7              | July08    | 22,2    | 16,4 | 40,0      | 36,5              | Nov.09         | 47,1         | 31,0 | 100,6 | 87,8           | Febr.10   | 25,1    | 21,0   | 32,0  | 31,7              |
| Apr.19    | 36,9                          | 19,2   | 113,6 | 111,6             | July09    | 21,5    | 17,4 | 32,8      | 31,7              | Nov.10         | 52,0         | 39,0 | 119,9 | 106,9          | Febr.11   | 39,2    | 19,2   | 153,4 | 120,5             |
| Average   | 27                            | 16     | 68    | 62                |           | 29      | 18   | 61        | 56                |                | 36           | 24   | 80    | 70             |           | 30      | 18     | 82    | 73                |

Comment:

The measurement was suspended on April 12, 2012 between 11.00 – 12.00 hours due to calibration, on April 19, 2012 between 15.00 – 16.00 and 16.00 – 17.00 hours due to maintenance.

The measurement was suspended on July 2, 2012 between 10.00-12.00 hours due to calibration.

The measurement was suspended on November 5, 2012 between 11.00-12.00 hours due to calibration.

The measurement was suspended on February 4, 2013 between 10.00-11.00 hours due to calibration.

Table 16.2.2-55: 6. LMp on-the-spot measurements/tests – NOx.





koncentráció - concentration, OVIT telep, Dankó Pista út 1. - Paks, Dankó Pista street 1. OVIT site, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-61: 6. LMp - NOx hourly run-off curves

| NO <sub>x</sub> concentration<br>Hourly measurement values<br>(µg/m³) |    |    |    |    |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|----|----|----|----|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                        |    |    |    |    |  |  |  |  |  |  |  |  |  |
| <b>1.</b> TEST (2012. 04. 06-04.19.)                                  | 27 | 16 | 68 | 62 |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 06. 26-07.09.)                                  | 29 | 18 | 61 | 56 |  |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012. 10. 28-11.10.) 36 24 80 70                      |    |    |    |    |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2013. 01.29. – 02.11.) 30 18 82 73                    |    |    |    |    |  |  |  |  |  |  |  |  |  |

Table 16.2.2-56: 6. LMp NO<sub>x</sub> measurements/tests results



koncentráció - concentration, OVIT telep, Dankó Pista út 1. - Paks, Dankó Pista street 1. OVIT site , 24 órás határérték - 24-hour limit, mérés - measurement/test

Figure 16.2.2-62: 6. LMp - NO<sub>x</sub> daily average concentration

Decree 4/2011. (I. 14.) VM defines no immission limit for NO<sub>x</sub>.

Compared to the hourly NO<sub>x</sub> limit defined by the former decree (200  $\mu$ g/m<sup>3</sup>), the measured values higher than the hourly limit were once-once during the 1st, the 3rd and the 4th measuring period. The values were 12-38 % higher than the limit.

The former decree defined 150  $\mu$ g/m<sup>3</sup>, as the 24-hour limit, and this was never exceeded during the measurement periods.

The hourly run-off curves can well characterise the daily volatility.  $NO_x$  concentration increased during the morning between 05.00-11.00 hours, and in the evening from 20.00 hours. The hourly and daily  $NO_x$  values showed similar run-off curves as NO.

The highest measured hourly  $NO_x$  concentration value was 276  $\mu$ g/m<sup>3</sup>, it was during the 3rd measuring period, on November 6, 2012 between 08.00-09.00 a.m.

The average values of the NO<sub>x</sub> measurements were: 26,7 µg/m<sup>3</sup>, 29,2 µg/m<sup>3</sup>, 36,5 µg/m<sup>3</sup>, 29,6 µg/m<sup>3</sup>.

Based on the  $NO_x$  measurement results we can state that the volatility reflects the impacts of the local, target-based morning traffic.

### SO<sub>2</sub> immission

| SO <sub>2</sub> concentration |             |        |       |                   |           |             |         |          |                   |                |              |        |       |                   |           |             |        |       |                   |
|-------------------------------|-------------|--------|-------|-------------------|-----------|-------------|---------|----------|-------------------|----------------|--------------|--------|-------|-------------------|-----------|-------------|--------|-------|-------------------|
|                               |             |        |       |                   |           |             | Base    | d on dai | ly assessmer      | t hourly conce | entration va | alues  |       |                   |           |             |        |       |                   |
|                               | 1           | . Test |       |                   |           | 2           | 2. TEST |          |                   |                | 3            | . Test |       |                   |           | 4           | . Test |       |                   |
| Measuring                     | Avera<br>ge | Min    | Max   | 98%<br>percentile | Measuring | Avera<br>ge | Min     | Max      | 98%<br>percentile | Measuring      | Aver-<br>age | Min    | Max   | 98%<br>percentile | Measuring | Avera<br>ge | Min    | Max   | 98%<br>percentile |
| pened                         |             | μ      | ıg/m³ |                   | pened     |             |         | ug/m³    |                   | period         |              | μ      | ıg/m³ |                   | pened     |             | μ      | ıg/m³ |                   |
| Apr.06                        | 1,3         | 0,9    | 1,8   | 1,8               | June 26   | 0,9         | 0,6     | 1,5      | 1,4               | Oct.28         | 0,8          | 0,4    | 1,4   | 1,4               | Jan.29    | 4,6         | 3,7    | 5,2   | 5,2               |
| Apr.07                        | 0,9         | 0,7    | 1,4   | 1,3               | June 27   | 0,9         | 0,6     | 1,4      | 1,4               | Oct.29         | 0,7          | 0,5    | 0,9   | 0,9               | Jan.30    | 4,4         | 4,1    | 4,6   | 4,6               |
| Apr.08                        | 1,0         | 0,7    | 1,5   | 1,5               | June 28   | 0,8         | 0,7     | 1,3      | 1,3               | Oct.30         | 0,8          | 0,3    | 1,3   | 1,3               | Jan.31    | 4,4         | 4,0    | 5,2   | 5,2               |
| Apr.09                        | 1,2         | 0,7    | 1,8   | 1,8               | June 29   | 0,9         | 0,7     | 1,2      | 1,2               | Oct.31         | 1,2          | 0,4    | 2,1   | 2,0               | Febr.01   | 4,5         | 4,0    | 4,9   | 4,9               |
| Apr.10                        | 1,3         | 0,7    | 3,6   | 2,7               | June 30   | 1,1         | 0,7     | 1,5      | 1,5               | Nov.01         | 0,8          | 0,3    | 1,3   | 1,3               | Febr.02   | 4,3         | 3,9    | 4,8   | 4,8               |
| Apr.11                        | 1,3         | 0,7    | 2,6   | 2,5               | July01    | 1,3         | 0,7     | 2,1      | 2,1               | Nov.02         | 1,0          | 0,5    | 1,6   | 1,5               | Febr.03   | 4,2         | 3,7    | 5,1   | 5,1               |
| Apr.12                        | 1,3         | 0,7    | 2,1   | 2,0               | July02    | 1,4         | 0,7     | 1,9      | 1,9               | Nov.03         | 0,6          | 0,4    | 0,9   | 0,9               | Febr.04   | 4,3         | 3,6    | 4,8   | 4,8               |
| Apr.13                        | 0,8         | 0,7    | 1,1   | 1,1               | July03    | 1,0         | 0,7     | 1,5      | 1,5               | Nov.04         | 0,8          | 0,4    | 1,7   | 1,6               | Febr.05   | 4,6         | 3,8    | 5,1   | 5,0               |
| Apr.14                        | 1,3         | 0,9    | 1,7   | 1,7               | July04    | 1,2         | 0,7     | 1,8      | 1,8               | Nov.05         | 0,7          | 0,4    | 1,1   | 1,1               | Febr.06   | 4,6         | 4,2    | 5,4   | 5,3               |
| Apr.15                        | 1,0         | 0,7    | 1,2   | 1,2               | July05    | 1,2         | 0,7     | 2,5      | 2,3               | Nov.06         | 0,8          | 0,3    | 1,8   | 1,7               | Febr.07   | 4,6         | 4,0    | 5,4   | 5,4               |
| Apr.16                        | 1,0         | 0,7    | 1,5   | 1,5               | July06    | 1,0         | 0,7     | 1,5      | 1,5               | Nov.07         | 0,8          | 0,4    | 1,3   | 1,2               | Febr.08   | 4,7         | 4,0    | 5,3   | 5,2               |
| Apr.17                        | 1,0         | 0,8    | 1,3   | 1,3               | July07    | 1,3         | 0,7     | 1,8      | 1,8               | Nov.08         | 0,9          | 0,3    | 1,7   | 1,6               | Febr.09   | 4,8         | 4,5    | 5,1   | 5,1               |
| Apr.18                        | 1,3         | 0,8    | 1,8   | 1,8               | July08    | 1,2         | 0,7     | 1,6      | 1,6               | Nov.09         | 0,8          | 0,4    | 1,5   | 1,5               | Febr.10   | 4,8         | 4,3    | 5,0   | 5,0               |
| Apr.19                        | 1,2         | 0,7    | 1,8   | 1,8               | July09    | 0,9         | 0,7     | 1,4      | 1,4               | Nov.10         | 1,1          | 0,7    | 1,9   | 1,8               | Febr.11   | 4,8         | 4,1    | 5,4   | 5,4               |
| Average                       | 1           | 1      | 2     | 2                 |           | 1           | 1       | 2        | 2                 |                | 1            | 0      | 1     | 1                 |           | 5           | 4      | 5     | 5                 |

Comment:

The measurement was suspended on April 12, 2012 between 11.00 – 12.00 hours due to calibration, and on April 19, 2012 between 15.00 – 16.00 and 16.00 – 17.00 hours due to maintenance.

The measurement was suspended on July 2, 2012 between 10.00-12.00 hours due to calibration.

The measurement was suspended on November 5, 2012 between 11.00-12.00 hours due to calibration.

The measurement was suspended on February 4, 2013 between 10.00-11.00 hours due to calibration.

Table 16.2.2-57: 6. LMp on-the-spot measurements/tests – SO<sub>2</sub>





koncentráció - concentration, OVIT telep, Dankó Pista út 1. - Paks, Dankó Pista street 1. OVIT site, mérési időszak - measurement period, óra - hour, határérték - limit

Figure 16.2.2-63: 6. LMp - SO2 hourly run-off curves

| SO <sub>2</sub> concentration<br>Based on hourly measurement values<br>(µg/m³) |                                              |   |   |   |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------|---|---|---|--|--|--|--|--|--|--|--|--|
| Average Min Max 98% percentile                                                 |                                              |   |   |   |  |  |  |  |  |  |  |  |  |
| <b>1.</b> TEST (2012. 04. 06-04.19.)                                           | 1                                            | 1 | 2 | 2 |  |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 06. 26-07.09.)                                           | 1                                            | 1 | 2 | 2 |  |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012. 10. 28-11.10.)                                           | <b>3.</b> TEST (2012. 10. 28-11.10.) 1 0 1 1 |   |   |   |  |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2013. 01.29. – 02.11.) 5 4 5 5                                 |                                              |   |   |   |  |  |  |  |  |  |  |  |  |

Table 16.2.2-58: 6. LMp SO<sub>2</sub> measurements/tests results



koncentráció - concentration, OVIT telep, Dankó Pista út 1. - Paks, Dankó Pista street 1. OVIT site , 24 órás határérték - 24-hour limit, mérés - measurement/test Figure 16.2.2-64: 6. LMp – SO<sub>2</sub> daily average concentration

The measured hourly SO<sub>2</sub> immission values were well below the 250  $\mu$ g/m<sup>3</sup> hourly limit.

The highest hourly value was measured during the 4th measurement period on February 6 between 08.00-09.00 a.m., its value was 5,4  $\mu$ g/m<sup>3</sup>, 2% of the hourly limit.

The 24-hour average concentration values did not exceed even 10% of the 125  $\mu$ g/m<sup>3</sup> daily limit.

Average values of the SO<sub>2</sub> measurements were: 1 µg/m<sup>3</sup>, 1 µg/m<sup>3</sup>, 1 µg/m<sup>3</sup>, 5 µg/m<sup>3</sup>.

#### CO immission

|          | CO concentration                                        |       |        |                   |          |         |       |        |                   |           |         |       |        |                   |           |         |       |        |                   |
|----------|---------------------------------------------------------|-------|--------|-------------------|----------|---------|-------|--------|-------------------|-----------|---------|-------|--------|-------------------|-----------|---------|-------|--------|-------------------|
|          | Based on daily assessment hourly concentration values * |       |        |                   |          |         |       |        |                   |           |         |       |        |                   |           |         |       |        |                   |
|          | 1. TEST 2. TEST.                                        |       |        |                   |          |         |       |        |                   |           | 3. Test |       |        |                   |           | 4. Test |       |        |                   |
| Measurin | Average                                                 | Min   | Max    | 98%<br>percentile | Measurin | Average | Min   | Max    | 98%<br>percentile | Measuring | Average | Min   | Max    | 98%<br>percentile | Measuring | Average | Min   | Max    | 98%<br>percentile |
| g period |                                                         |       | µg/m³  | •                 | g penou  |         | μ     | g/m³   | •                 | period    |         |       | µg/m³  |                   | period    |         |       | ug/m³  |                   |
| Apr.06   | 212,8                                                   | 117,0 | 393,0  | 354,4             | June 26  | 293,3   | 73,0  | 622,0  | 609,1             | Oct.28    | 246,0   | 130,0 | 445,0  | 440,4             | Jan.29    | 510,8   | 145,0 | 1174,0 | 1114,7            |
| Apr.07   | 183,9                                                   | 131,0 | 238,0  | 233,4             | June 27  | 313,5   | 146,0 | 509,0  | 498,4             | Oct.29    | 289,5   | 100,0 | 607,0  | 584,0             | Jan.30    | 465,9   | 110,0 | 1481,0 | 1260,2            |
| Apr.08   | 132,5                                                   | 79,0  | 186,0  | 180,9             | June 28  | 317,9   | 78,0  | 1003,0 | 853,5             | Oct.30    | 277,9   | 118,0 | 508,0  | 494,2             | Jan.31    | 318,6   | 176,0 | 496,0  | 469,3             |
| Apr.09   | 201,5                                                   | 97,0  | 509,0  | 504,9             | June 29  | 241,3   | 135,0 | 676,0  | 603,8             | Oct.31    | 260,5   | 71,0  | 532,0  | 507,2             | Febr.01   | 386,3   | 133,0 | 1248,0 | 1087,5            |
| Apr.10   | 281,0                                                   | 132,0 | 856,0  | 744,2             | June 30  | 250,8   | 84,0  | 530,0  | 501,9             | Nov.01    | 263,2   | 101,0 | 583,0  | 527,3             | Febr.02   | 402,3   | 173,0 | 1303,0 | 1158,6            |
| Apr.11   | 264,0                                                   | 132,0 | 537,0  | 524,6             | July01   | 304,3   | 71,0  | 649,0  | 624,6             | Nov.02    | 175,3   | 68,0  | 349,0  | 338,9             | Febr.03   | 317,0   | 94,0  | 1277,0 | 1224,6            |
| Apr.12   | 243,1                                                   | 119,0 | 981,0  | 844,6             | July02   | 284,6   | 104,0 | 698,0  | 600,1             | Nov.03    | 257,9   | 118,0 | 698,0  | 682,4             | Febr.04   | 367,8   | 154,0 | 927,0  | 873,8             |
| Apr.13   | 379,9                                                   | 177,0 | 683,0  | 662,3             | July03   | 309,9   | 73,0  | 541,0  | 530,4             | Nov.04    | 263,2   | 145,0 | 437,0  | 431,9             | Febr.05   | 401,4   | 88,0  | 1359,0 | 1076,1            |
| Apr.14   | 258,0                                                   | 121,0 | 419,0  | 408,9             | July04   | 327,7   | 93,0  | 849,0  | 764,8             | Nov.05    | 198,7   | 113,0 | 336,0  | 326,8             | Febr.06   | 415,1   | 119,0 | 1231,0 | 1087,5            |
| Apr.15   | 335,3                                                   | 129,0 | 1130,0 | 1063,8            | July05   | 295,9   | 121,0 | 1024,0 | 854,3             | Nov.06    | 212,6   | 97,0  | 572,0  | 492,9             | Febr.07   | 280,4   | 124,0 | 815,0  | 774,5             |
| Apr.16   | 297,5                                                   | 156,0 | 847,0  | 660,2             | July06   | 301,4   | 140,0 | 579,0  | 570,7             | Nov.07    | 300,9   | 81,0  | 666,0  | 617,7             | Febr.08   | 203,3   | 107,0 | 392,0  | 342,3             |
| Apr.17   | 393,1                                                   | 124,0 | 968,0  | 952,8             | July07   | 294,5   | 142,0 | 629,0  | 560,5             | Nov.08    | 241,3   | 62,0  | 608,0  | 552,8             | Febr.09   | 297,6   | 169,0 | 451,0  | 441,8             |
| Apr.18   | 224,6                                                   | 129,0 | 459,0  | 432,8             | July08   | 299,0   | 72,0  | 610,0  | 609,1             | Nov.09    | 231,0   | 105,0 | 362,0  | 357,9             | Febr.10   | 373,6   | 119,0 | 812,0  | 772,9             |
| Apr.19   | 280,1                                                   | 111,0 | 577,0  | 552,6             | July09   | 363,0   | 132,0 | 691,0  | 675,8             | Nov.10    | 407,5   | 121,0 | 1056,0 | 1024,3            | Febr.11   | 584,3   | 116,0 | 1776,0 | 1744,7            |
| Average  | 263                                                     | 125   | 627    | 580               |          | 300     | 105   | 686    | 633               |           | 259     | 102   | 554    | 527               |           | 380     | 130   | 1053   | 959               |

Comment:

\* Maximum of daily 8-hour moving average concentrations. The maximum value shall be selected among the 8-hour moving average values calculated on the basis of the hourly averages. The 8-hour average values that were so calculated shall refer to those days, on which the 8-hour period ends, thus the first test period of any day will last from 17 hours of the previous day until 01 hour of the given day. The last test on any day will last from 16 to 24 hours within the given day.

The measurement was suspended on April 12, 2012 between 11.00 – 12.00 hours due to calibration, on April 19, 2012 between 15.00 – 16.00 and 16.00 – 17.00 hours due to maintenance.

The measurement was suspended on July 2, 2012 between 10.00-12.00 due to calibration.

The measurement was suspended on November 5, 2012 between 11.00-12.00 hours due to calibration.

The measurement was suspended on February 4, 2013 between 10.00-11.00 hours due to calibration.

Table 16.2.2-59: 6. LMp on-the-spot measurements/tests - CO



#### The following figures present the CO concentration hourly test results:



Figure 16.2.2-65: 6. LMp - CO hourly run-off curves

| CC<br>Based on I                       | CO concentration<br>Based on hourly measurement values<br>(µg/m³) |     |      |                |  |  |  |  |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------------|-----|------|----------------|--|--|--|--|--|--|--|--|
|                                        | Average                                                           | Min | Max  | 98% percentile |  |  |  |  |  |  |  |  |
| <b>1.</b> TEST (2012. 04. 06-04.19.)   | 378                                                               | 160 | 581  | 575            |  |  |  |  |  |  |  |  |
| <b>2.</b> TEST (2012. 06. 26-07.09.)   | 434                                                               | 334 | 545  | 542            |  |  |  |  |  |  |  |  |
| <b>3. TEST</b> (2012. 10. 28-11.10.)   | 351                                                               | 227 | 543  | 517            |  |  |  |  |  |  |  |  |
| <b>4.</b> TEST (2013. 01.28. – 02.11.) | 614                                                               | 348 | 1068 | 994            |  |  |  |  |  |  |  |  |

|  | Table | 16.2.2-60: | 6. LMp | СО | measurements/tests results |
|--|-------|------------|--------|----|----------------------------|
|--|-------|------------|--------|----|----------------------------|



koncentráció - concentration, OVIT telep, Dankó Pista út 1. - Paks, Dankó Pista street 1. OVIT site , 24 órás határérték - 24-hour limit, mérés - measurement/test Figure 16.2.2-66: 6. LMp – CO daily average concentration

The measured hourly CO immission values were always well below the 10 000 µg/m<sup>3</sup> hourly limit.

The highest concentration was measured during the 4th measurement period on February 11, between 14.00-15.00 hours, its value was 1776  $\mu$ g/m<sup>3</sup>, 18% of the relevant limit.

The maximum of the 8-hour moving average values was lower than 22% of the 24-hour limit (5 000 µg/m<sup>3</sup>).

Bi-weekly average values of the CO measurements were: 263,4 µg/m<sup>3</sup>, 299,8 µg/m<sup>3</sup>, 259 µg/m<sup>3</sup>, 380,0 µg/m<sup>3</sup>.

| Measuring | <b>PM</b> 10 | TSPM |
|-----------|--------------|------|-----------|--------------|------|-----------|--------------|------|-----------|--------------|------|
| period    | μg           | /m³  | period    | μg           | /m³  | period    | μg           | /m³  | period    | µg/m³        |      |
| Apr.06    | 36           | 44   | June 26   | 12           | 17   | Oct.28    | 10           | 11   | Dec.29    | 44           | 45   |
| Apr.07    | 26           | 30   | June 27   | 14           | 24   | Oct.29    | 14           | 17   | Dec.30    | 19           | 21   |
| Apr.08    | 23           | 48   | June 28   | 21           | 42   | Oct.30    | 20           | 24   | Dec.31    | 13           | 17   |
| Apr.09    | 24           | 28   | June 29   | 25           | 46   | Oct.31    | 30           | 32   | Jan.01    | 22           | 32   |
| Apr.10    | 37           | 54   | June 30   | 34           | 50   | Nov.01    | 18           | 19   | Jan.02    | 16           | 16   |
| Apr.11    | 38           | 61   | July01    | 41           | 63   | Nov.02    | 17           | 18   | Jan.03    | 9            | 14   |
| Apr.12    | 24           | 34   | July02    | 45           | 76   | Nov.03    | 15           | 17   | Jan.04    | 26           | 30   |
| Apr.13    | 27           | 46   | July03    | 38           | 69   | Nov.04    | 22           | 24   | Jan.05    | 28           | 31   |
| Apr.14    | 26           | 28   | July04    | 57           | 68   | Nov.05    | 13           | 18   | Jan.06    | 26           | 26   |
| Apr.15    | 26           | 28   | July05    | 40           | 59   | Nov.06    | 11           | 18   | Jan.07    | 15           | 17   |
| Apr.16    | 19           | 29   | July06    | 40           | 53   | Nov.07    | 15           | 21   | Jan.08    | 27           | 29   |
| Apr.17    | 23           | 33   | July07    | 33           | 42   | Nov.08    | 16           | 22   | Jan.09    | 40           | 40   |
| Apr.18    | 23           | 37   | July08    | 23           | 35   | Nov.09    | 21           | 25   | Jan.10    | 34           | 34   |
| Apr.19    | 28           | 44   | July09    | 20           | 35   | Nov.10    | 43           | 45   | Jan.11    | 41           | 43   |
| min       | 19           | 28   |           | 12           | 17   |           | 10           | 11   |           | 9            | 14   |
| max       | 38           | 61   |           | 57           | 76   |           | 43           | 45   |           | 44           | 45   |
| Average   | 27           | 39   |           | 32           | 49   |           | 19           | 22   |           | 26           | 28   |

## PM<sub>10</sub>, TSPM 24-hour concentration

Table 16.2.2-61: 6. LMp on-the-spot measurements/tests – PM10, TSPM

The analysed 24-hour average and maximum  $PM_{10}$  values were not higher than the 24-hour limit on any day during the 1st, the 3<sup>rd</sup> and the 4th measuring period.

The analysed 24-hour average PM<sub>10</sub> value was lower than the 24-hour limit on July 4 during the <u>2nd measuring period</u>, and the measured 24-hour value was 57  $\mu$ g/m<sup>3</sup>.

Decree 4/2011. (I. 14.) VM defines no limit for the TSPM.

The formerly valid Decree 14/2001.(V.9.) KöM-EüM-FVM defined 100 µg/m<sup>3</sup> as the 24-hour limit.

The measurement results did not exceed the previous 24-hour limit.







Figure 16.2.2-67: 6. LMp - PM<sub>10</sub> and a TSPM daily run-off curves

### Settling dust

| Settling dust concentration |            |                         |  |  |  |  |  |  |  |  |  |
|-----------------------------|------------|-------------------------|--|--|--|--|--|--|--|--|--|
| First days                  | Last days  | g/m <sup>2</sup> x30nap |  |  |  |  |  |  |  |  |  |
| 2012.01.23                  | 2012.02.23 | 0,6                     |  |  |  |  |  |  |  |  |  |
| 2012.02.23                  | 2012.03.28 | 1,8                     |  |  |  |  |  |  |  |  |  |
| 2012.03.28                  | 2012.04.26 | 4,2                     |  |  |  |  |  |  |  |  |  |
| 2012.04.26                  | 2012.05.22 | 7,7                     |  |  |  |  |  |  |  |  |  |
| 2012.05.22                  | 2012.06.25 | 3,8                     |  |  |  |  |  |  |  |  |  |
| 2012.06.25                  | 2012.07.31 | 4,3                     |  |  |  |  |  |  |  |  |  |
| 2012.07.31                  | 2012.08.30 | 1,9                     |  |  |  |  |  |  |  |  |  |
| 2012.09.11                  | 2012.10.12 | 2,3                     |  |  |  |  |  |  |  |  |  |
| 2012.10.12                  | 2012.11.12 | 0,9                     |  |  |  |  |  |  |  |  |  |
| 2012.11.12                  | 2012.12.12 | 1,2                     |  |  |  |  |  |  |  |  |  |
| 2012.12.12                  | 2013.01.11 | 0,8                     |  |  |  |  |  |  |  |  |  |
| 2013.01.11                  | 2013.02.12 | 1,6                     |  |  |  |  |  |  |  |  |  |
| 2013.02.25                  | 2013.03.29 | 0,5                     |  |  |  |  |  |  |  |  |  |

Table 16.2.2-62: 6. LMp on-the-spot measurements/tests - settling dust

Decree 4/2011. (I. 14.) VM defines no limit for the **settling dust**. The former decree defined 16 g/m<sup>2</sup> x 30-day limit. The measured settling dust concentration values never exceeded the former limit, the highest measured value was 48 % of the limit.

#### O<sub>3</sub> immission

| Measuring period | <b>O</b> 3 | Measuring | <b>O</b> 3 | Measuring | <b>O</b> <sub>3</sub> | Measuring | <b>O</b> 3 |
|------------------|------------|-----------|------------|-----------|-----------------------|-----------|------------|
| Measuring period | µg/m³      | period    | µg/m³      | period    | µg/m³                 | period    | µg/m³      |
| Apr.06           | 53         | June 26   | 106        | Oct.28    | 30                    | Dec.29    | 29         |
| Apr.07           | 49         | June 27   | 114        | Oct.29    | 29                    | Dec.30    | 30         |
| Apr.08           | 60         | June 28   | 91         | Oct.30    | 35                    | Dec.31    | 37         |
| Apr.09           | 68         | June 29   | 100        | Oct.31    | 38                    | Jan.01    | 30         |
| Apr.10           | 74         | June 30   | 110        | Nov.01    | 33                    | Jan.02    | 27         |
| Apr.11           | 71         | July01    | 118        | Nov.02    | 23                    | Jan.03    | 32         |
| Apr.12           | 48         | July02    | 100        | Nov.03    | 26                    | Jan.04    | 31         |
| Apr.13           | 59         | July03    | 104        | Nov.04    | 35                    | Jan.05    | 28         |
| Apr.14           | 55         | July04    | 113        | Nov.05    | 31                    | Jan.06    | 27         |
| Apr.15           | 62         | July05    | 118        | Nov.06    | 27                    | Jan.07    | 33         |
| Apr.16           | 51         | July06    | 121        | Nov.07    | 32                    | Jan.08    | 31         |
| Apr.17           | 47         | July07    | 99         | Nov.08    | 28                    | Jan.09    | 25         |
| Apr.18           | 51         | July08    | 97         | Nov.09    | 29                    | Jan.10    | 28         |
| Apr.19           | 55         | July09    | 94         | Nov.10    | 35                    | Jan.11    | 33         |
| min              | 47         |           | 91         |           | 23                    |           | 25         |
| max              | 74         |           | 121        |           | 38                    |           | 37         |
| Average          | 57         |           | 106        |           | 31                    |           | 30         |

\* Maximum of daily 8-hour moving average concentration values. The maximum value shall be selected among the 8-hour moving average values generated on the basis of hourly averages. The 8-hour average values that were so calculated shall refer to those days, on which the 8-hour period ends, thus the first test period of any day will last from 17 hours of the previous day until 01 hour of the given day. The last test on any day will last from 16 to 24 hours within the given day.

The measurement was suspended on April 12, 2012 between 11.00 - 12.00 hours due to calibration, on April 19, 2012 between 15.00 - 16.00 and 16.00 - 17.00 hours due to maintenance, on July 2 2012 between 10.00-12.00 hours, on November 5, 2012 between 11.00-12.00 hours, on February 4, 2013 between 10.00-11.00 hours due to calibration.

Table 16.2.2-63: 6. LMp on-the-spot measurements/tests – O<sub>3</sub>





koncentráció - concentration, OVIT telep, Dankó Pista út 1. - Paks, Dankó Pista street 1. OVIT site, mérési időszak - measurement period, dátum - date, határérték - limit

Figure 16.2.2-68: O3 daily run-off curves

The daily maximum 8-hour moving average  $O_3$  concentration values did not reach the limit either during the <u>1st, the</u> 3rd or the <u>4th measuring periods</u>. The maximum value of the  $O_3$  daily 8-hour moving average concentration during the <u>2nd measuring period</u> (on July 6) was higher than the limit, the value was 121 µg/m<sup>3</sup>, less than 1 % of the limit.

## 16.2.2.6 Aggregated assessment of on-the-spot measurement results in 2012/2013

#### Measurement sites



mérés - measurement/test

Figure 16.2.2-69: location of air pollution measuring points during various measuring periods

### Measurement points parameters

The following table presents the GPS coordinates for the measuring points (1-6 LMp), and the dates of nitrogen dioxide ( $NO_2$ ), nitrogen oxides ( $NO_x$ ), sulphur-dioxide ( $SO_2$ ), carbon monoxide (CO) and ozone ( $O_3$ ), particulate matter ( $PM_{10}$ ), total particulate matter (TSPM) measurements/tests for the relevant measuring periods.

|        |                | 1. mea          | suring period    |                                      |  |  |  |  |
|--------|----------------|-----------------|------------------|--------------------------------------|--|--|--|--|
|        | Coord          | inate           | Height*          | Measurement date                     |  |  |  |  |
| 1. LMp | N46°35'11,22"  | E18°51'42,66"   | 92,29 m          | 2012.01.2402.06.                     |  |  |  |  |
| 2. LMp | N46°34'59,16"  | E18°50'47,51"   | 99,68 m          | 2012.02.2403.08.                     |  |  |  |  |
| 3. LMp | N46°34'25,32"  | E18°50'43,8"    | 99,92 m          | 2012.02.0902.22.                     |  |  |  |  |
| 4. LMp | N46°33'55,66"  | E18°49'40,84"   | 94,17 m          | 2012.03.1403.27.                     |  |  |  |  |
| 5. LMp | N46°35'25,15"  | E18°52'58,15"   | 94,98 m          | 2012. 03. 29-03.30.<br>03. 29-04.04. |  |  |  |  |
| •      | Unsuccessfull  | Unsuccessful    | Unsuccessful!""" | Unsuccessful!***                     |  |  |  |  |
| 6. LMp | N46°35'11,22"  | E18°51'42,66"   | 101,02 m         | 2012.04.0604.19.                     |  |  |  |  |
|        |                | 2. mea          | suring period    |                                      |  |  |  |  |
| 1. LMp | N46°35'10,72"  | E18°51'43,16"   | 105,47 m         | 2012.04.2105.04.                     |  |  |  |  |
| 2. LMp | N46°34'59,12"  | E18°50'46,36"   | 102,95 m         | 2012.05.2306.07.                     |  |  |  |  |
| 3. LMp | N46°34'24,56"  | E18°50'43,51"   | 105,3 m          | 2012.05.0805.21.                     |  |  |  |  |
| 4. LMp | N46°33'55,33"  | E18°49'40,37"   | 100,25 m         | 2012.06.0906.22.                     |  |  |  |  |
| 5. LMp | N46°35'46,46"  | E18°53'27,67"   | 96,76 m          | 2012.07.1707.31.                     |  |  |  |  |
| 6. LMp | N46°36'17,68"  | E18°50'36,82"   | 109,29 m         | 2012.06.2607.09.                     |  |  |  |  |
|        |                | 3. mea          | suring period    |                                      |  |  |  |  |
| 1. LMp | N46°35'10,59"  | E18°51'43,48"   | 105,47 m         | 2012.08.0108.14.                     |  |  |  |  |
| 2. LMp | N46°34'59,2"   | E18°50'45,85"   | 102,95 m         | 2012.09.13-09.26.                    |  |  |  |  |
| 3. LMp | N46°34'24,61"  | E18°50'43,8"    | 105,3 m          | 2012.08.1608.29.                     |  |  |  |  |
| 4. LMp | N46°33'55,44"  | **E18°49'49,24" | 100,25 m         | 2012.09.2810.11.                     |  |  |  |  |
| 5. LMp | N46°35'46,46"  | E18°53'27,67"   | 97,79 m          | 2012.10.1310.25.****                 |  |  |  |  |
| 6. LMp | N46°36'17,68"  | E18°50'36,82"   | 109,29 m         | 2012.10.2811.10.                     |  |  |  |  |
|        |                | 4. mea          | suring period    |                                      |  |  |  |  |
| 1. LMp | N46°35'10,59"  | E18°51'43,05"   | 92,84 m          | 2012.11.1311.26.                     |  |  |  |  |
| 2. LMp | N46°34'58,33"  | E18°50'47,87"   | 94,80 m          | 2012.12.1312.26.                     |  |  |  |  |
| 3. LMp | N46°34'24,24"  | E18°50'44,09"   | 105,52 m         | 2012.11.2812.11.                     |  |  |  |  |
| 4. LMp | N46°33'55,656" | E18°49'40,62"   | 102,87 m         | 2013.01.1201.25.*****                |  |  |  |  |
| 5. LMp | N46°35'46,46"  | E18°53'27,67"   | 97,79 m          | 2012.12.282013.01.10.                |  |  |  |  |
| 6. LMp | N46°36'17,68"  | E18°50'36,82"   | 109,29 m         | 2013.01.2902.11.                     |  |  |  |  |
|        |                | 5. mea          | suring period    |                                      |  |  |  |  |
| 5. LMp | N46°35'46,46"  | E18°53'27,67"   | 97,79 m          | 2013.03.1503.28.                     |  |  |  |  |

Comments:

\* Height above sea level

\*\* The measuring point was relocated at Csámpa - at the request of landowner who provided power supply - with 20 m.

\*\*\*\* The tests were cancelled due to 170 V - 220 V voltage volatility. Tests were later held during the 5th measuring period. \*\*\*\* Tests at Dunaszentbenedek – OVIT, and \*\*\*\*\*Csámpa - Dunaszentbenedek were inter-changed to ensure more even distribution of tests at at Dunaszentbenedek.

Table 16.2.2-64: GPS coordinates of the measurement points

In Dunaszerdahely at the 5. LMp site at Dam keeper house after measurements started on March 29 significant voltage volatility (170V-220V) emerged, and it prevented the measurements/tests. The measuring instruments need minimum 200V voltage for their acceptable operation. (Dunakert street 2.). We encountered with similar voltage volatility a couple of streets further. As the problem could not be resolved within a few days, we continued the measurements/tests at Paks. We could find an acceptable site for the next measuring period, thus subsequent measurements were performed on such sites. The tests suspended in the 1st period were performed in 2013 first quarter.

Periods of settling dust tests in all measuring points:

| Test first days | Test last days |
|-----------------|----------------|
| 2012.01.23.     | 2012.02.23.    |
| 2012.02.23.     | 2012.03.28.    |
| 2012.03.28.     | 2012.04.26.    |
| 2012.04.26.     | 2012.05.22.    |
| 2012.05.22.     | 2012.06.25.    |
| 2012.06.25.     | 2012.07.31.    |
| 2012.07.31.     | 2012.08.30.    |
| 2012.09.11.     | 2012.10.12.    |
| 2012.10.12.     | 2012.11.12.    |
| 2012.11.12.     | 2012.12.12.    |
| 2012.12.12.     | 2013.01.11.    |
| 2013.01.11.     | 2013.02.12.    |
| 2013.02.25*     | 2013.03.29     |

Comment:

\*test starting date: 2013.02.25 (parallel with the tests at Dunaszentbenedek)

Table 16.2.2-65: Dates of the performed settling dust measurements/tests

Time schedule of the performed on-the-spot measurements/tests:

|   |   |    |     |      | 2012 |      |     |    | 2013 |    |     |    |    |      |    |    |     | 2013  | -    |         |          |     |              |    |
|---|---|----|-----|------|------|------|-----|----|------|----|-----|----|----|------|----|----|-----|-------|------|---------|----------|-----|--------------|----|
|   |   | Hé | Ke  | Sz   | Cs   | Pé   | Sz  | Va |      | Hé | Ke  | Sz | Cs | Pé   | Sz | Va | J   | Hé    | Ke   | Sz      | Cs       | Pé  | Sz           | Va |
|   | J |    |     |      |      |      |     | 1  | J    |    |     |    |    |      |    | 1  | А   | 31    | 1    | 2       | 3        | 4   | 5            | 6  |
|   | A | 2  | 3   | 4    | 5    | 6    | - 7 | 8  | Ú    | 2  | _3  | 4  | 5  | 6    | 7  | 8  | Ν   | 7     | 8    | 9       | 10       | C   | 12           | 13 |
|   | N | 9  | 10  | 11   | 12   | 13   | 14  | 15 | L    | 9  | M   | 11 | 12 | 13   | 14 | 15 | U   | - 14  | 15   | 16      | 17       | 18  | 19           | 20 |
|   | U | 16 | 17  | 18   | 19   | 20   | 21  | 22 | Т    | D  | 17  | 18 | 19 | 20   | 21 | 22 | Á   | 21    | 22   | 23      | 24       | 25  | 26           | 27 |
|   | Á | 3  | 24  | 25   | 26   | 27   | 28  | 29 | U    | 23 | 24  | 25 | 26 | 27   | 28 | 29 | R   | 0     | 29   | 30      | 31       | 1   | 2            | 3  |
|   | R | 30 | 31  | 1    | 2    | 3    | 4   | 5  | s    | 30 | 1   | 1  | 2  | 3    | 4  | 5  | F   | 4     | 5    | 6       | 7        | 8   | 9            | 10 |
|   | F | 6  | - 7 | M    | 9    | 10   | 11  | 12 | А    | 6  | - 7 | 8  | 9  | 10   | 11 | 12 | Е   | 11    | 12   | 13      | 14       | 15  | 16           | 17 |
|   | E | 13 | 14  | 15   | 16   | 17   | 18  | 19 | U    | 13 | 14  | M  | 16 | 17   | 18 | 19 | В   | 18    | 19   | 20      | 21       | 22  | 23           | 24 |
|   | B | 20 | 21  | 22   | 23   | É    | 25  | 26 | G    | 20 | 21  | 22 | 23 | 24   | 25 | 26 | R   | 25    | 26   | 27      | 28       | 1   | 2            | 3  |
|   | R | 27 | 28  | 29   | 1    | 2    | 3   | 4  | U    | 27 | 28  | 29 | 30 | 31   | 1  | 2  | М   | 4     | 5    | 6       | 7        | 8   | 9            | 10 |
| I | Ν | 5  | 6   | 7    | 8    | 9    | 10  | 11 | S    | K  | 4   | 5  | 6  | 7    | 8  | 9  | Á   | 11    | 12   | 13      | D        | 15  | 16           | 17 |
|   | Á | 12 | •   | 14   | 15   | 16   | 17  | 18 | Ζ    | 10 | 11  | É  | 13 | 14   | 15 | 16 | R   | 18    | 19   | 20      | 21       | 22  | 23           | 24 |
|   | R | 19 | 20  | 21   | 22   | 23   | 24  | 25 | Е    | 17 | 18  | 19 | 20 | 21   | 22 | 23 | С   | 25    | 26   | 27      | 28       | 29  | 30           | 31 |
|   | С | 26 | 27  | D    | 29   | 30   | 31  | 1  | Ρ    | 24 | 25  | 26 | Ø  | 28   | 29 | 30 | Á   | 1     | 2    | 3       | 4        | 5   | 6            | 7  |
|   | Á | 2  | 3   | 4    | 0    | 6    | 7   | 8  | 0    | 1  | 2   | 3  | 4  | 5    | 6  | 7  | Ρ   | 8     | 9    | 10      | 11       | 12  | 13           | 14 |
|   | P | 9  | 10  | 11   | 12   | 13   | 14  | 15 | к    | 8  | 9   | 10 | 11 | D    | 13 | 14 | R   | 15    | 16   | 17      | 18       | 19  | 20           | 21 |
|   | R | 16 | 17  | 18   | 19   | 3    | 21  | 22 | T    | 15 | 16  | 17 | 18 | 19   | 20 | 21 | Т   | 22    | 23   | 24      | 25       | 26  | 27           | 28 |
|   | I | 23 | 24  | 25   | 26   | 27   | 28  | 29 | 0    | 22 | 23  | 24 | 25 | 26   | 07 | 28 | L   | 29    | 30   |         |          | ,   |              |    |
|   | L | 30 | 1   | 2    | 3    | 4    | 5   | 6  | В    | 29 | 30  | 31 | 1  | 2    | 3  | 4  |     |       | JELN | IAG     | YAR      | AZA | Г            |    |
| I | N | M  | 8   | 9    | 10   | 11   | 12  | 13 | Ν    | 5  | 6   | 7  | 8  | 9    | 10 | 11 |     |       |      |         |          |     |              |    |
|   | A | 14 | 15  | 16   | 17   | 18   | 19  | 20 | 0    | 3  | 13  | 14 | 15 | 16   | 17 | 18 |     | ATA   | LLAS | , BE    | HOZ      | ASN | <b>I</b> APJ | A  |
|   | J | 21 | Ξ   | 23   | 24   | 25   | 26  | 27 | V    | 19 | 20  | 21 | 22 | 23   | 24 | 25 | na  |       |      |         |          |     |              |    |
|   | U | 28 | 29  | 30   | 31   | 1    | 2   | 3  | E    | 26 | Ŵ   | 28 | 29 | 30   | 1  | 2  | M   | MUS   | SZAK | I VIZ   | SGA      |     |              |    |
|   | J | 4  | 5   | 6    | 7    | C    | 9   | 10 | D    | 3  | 4   | 5  | 6  | 7    | 8  | 9  | 1/7 |       |      | <i></i> |          |     |              |    |
|   | U | 11 | 12  | 13   | 14   | 15   | 16  | 17 | E    | 10 | 11  | E  | 13 | 14   | 15 | 16 | ĽХ  | KOF   | MER  | ES      |          |     |              |    |
|   | N | 18 | 19  | 20   | 21   | 22   | 23  | 24 | C    | 17 | 18  | 19 | 20 | 21   | 22 | 23 |     | 011/5 | DTE  |         | 8. ALÉ 1 | οŕο |              |    |
|   | L | 0  | 26  | - 27 | 28   | - 29 | 30  |    | E    | 24 | 25  | 26 | U  | - 28 | 29 | 30 | D   | SIKE  | RIF  | LEN     | ME       | RES |              |    |

Legend:

E – Plan

- M Meteorological station
- É Northern gate
- C Csámpa D Dunaszentbenedek
- O OVIT site
- átállás, behozás napja date of change-over
- Műszaki vizsga Technical inspection Körmérés Circular measurement
- Sikertelen mérés Unsuccessful measurement



| 2-week average concentrations<br>(μg/m <sup>3</sup> )              |         |         |         |         |         |      |  |  |  |
|--------------------------------------------------------------------|---------|---------|---------|---------|---------|------|--|--|--|
| Limit: Hourly 100 µg/m <sup>3</sup> , 24-hour 85 µg/m <sup>3</sup> |         |         |         |         |         |      |  |  |  |
| Measuring points                                                   | 1. test | 2. test | 3. test | 4. test | 5. test | Avrg |  |  |  |
| 1. LMp - Plant area                                                | 18      | 31      | 18      | 33      |         | 25   |  |  |  |
| Value exceeding the limit                                          |         | 0       | pcs     |         |         |      |  |  |  |
| 2. LMp – Next to the northern access road                          | 27      | 13      | 35      | 25      |         | 25   |  |  |  |
| Value exceeding the limit                                          | 8 pcs   | 0 pcs   | 8 pcs   | 5 pcs   |         |      |  |  |  |
| 3. LMp - Meteorological Station                                    | 32      | 16      | 27      | 23      |         | 25   |  |  |  |
| Value exceeding the limit                                          | 2 pcs   | 0 pcs   | 2 pcs   | 2 pcs   |         |      |  |  |  |
| 4. LMp - Csámpa, Kis street                                        | 19      | 15      | 30      | 26      |         | 23   |  |  |  |
| Value exceeding the limit                                          |         | 0       | pcs     |         |         |      |  |  |  |
| 5. LMp - (Dunaszentbenedek, Dam keeper                             |         |         |         |         |         |      |  |  |  |
| house)                                                             |         | 17      | 30      | 17      | 16      | 20   |  |  |  |
| Dunaszentbenedek, Rózsa street                                     | -       |         |         |         |         |      |  |  |  |
| Value exceeding the limit                                          |         |         | 0       | pcs     |         |      |  |  |  |
| 6. LMp - OVIT telep, Dankó Pista u. 1.                             | 23      | 25      | 28      | 23      |         | 25   |  |  |  |
| Value exceeding the limit                                          | 2 pcs   | 0 pcs   | 1 pcs   | 3 pcs   | -       |      |  |  |  |
| Baseline NO <sub>2</sub> pollution of the area                     |         |         |         |         |         | 24   |  |  |  |

## 16.2.2.6.1 NO<sub>2</sub> summary of measurement results

|  | Table 16.2.2-67: | NO <sub>2</sub> immission | measurement | results |
|--|------------------|---------------------------|-------------|---------|
|--|------------------|---------------------------|-------------|---------|

Based on test results and the environment of measuring points we can state that the hourly NO<sub>2</sub> values exceeding the limit and higher concentration values measured at 2.LMp, 3.LMp and 6.LMp points are due to traffic. The highest measured hourly NO<sub>2</sub> values dominantly occurred in the morning hours with values between 72  $\mu$ g/m<sup>3</sup> and 231  $\mu$ g/m<sup>3</sup>. NO<sub>2</sub> measurement results at 1.LMp, 4.LMp and 5.LMp present the immission values characteristic for the given area. NO<sub>2</sub> measurement results during the non-heating season were lower than during the heating season, as volatility in values were in line with the heating-non-heating seasons. The 24-hour limit was never exceeded during any measurement period.

The baseline NO<sub>2</sub> pollution of the area is  $24 \mu g/m^3$ .

| 16.2.2.6.2 NO <sub>x</sub> summary | of measurement results |
|------------------------------------|------------------------|
|------------------------------------|------------------------|

| 2-week average concentrations<br>(μg/m³)<br>Limit: -     |    |    |    |    |    |    |  |
|----------------------------------------------------------|----|----|----|----|----|----|--|
| Measuring points 1. test 2. test 3. test 4. test 5. test |    |    |    |    |    |    |  |
| 1. LMp - Plant area                                      | 23 | 36 | 20 | 47 |    | 32 |  |
| 2. LMp – Next to the northern access road                | 33 | 16 | 48 | 21 |    | 30 |  |
| <ol><li>LMp - Meteorological Station</li></ol>           | 37 | 20 | 33 | 32 | -  | 31 |  |
| 4. LMp - Csámpa, Kis street                              | 21 | 18 | 40 | 32 |    | 28 |  |
| 5. LMp - (Dunaszentbenedek, Dam keeper                   |    |    |    |    |    |    |  |
| house)                                                   | -  | 21 | 41 | 23 | 21 | 27 |  |
| Dunaszentbenedek, Rózsa street                           |    |    |    |    |    |    |  |
| 6. LMp - OVIT telep, Dankó Pista u. 1.                   | 27 | 29 | 36 | 30 | -  | 31 |  |
| Baseline NO <sub>x</sub> pollution of the area           |    |    |    |    |    | 30 |  |

Table 16.2.2-68: NO<sub>x</sub> immission measurement results

Decree 4/2011. (I. 14.) VM on air load limits and emission limits for stationary air polluting point sources defines no immission limit for NO<sub>x</sub>. The former (annulled) Decree 14/2001.(V.9.) KöM-EüM-FVM defined for NO<sub>x</sub> 200  $\mu$ g/m<sup>3</sup> hourly, 150  $\mu$ g/m<sup>3</sup> 24-hour and 70  $\mu$ g/m<sup>3</sup> annual limits. based on the above we may state that the measured NO<sub>x</sub> values were not higher than the hourly or the 24-hour limits either. Measurement results of 4.LMp, 1.LMp and 5.LMp measuring points were in line with the volatility of heating-non-heating cycles, where the NO<sub>x</sub> measurement results during the non-heating season were – similarly to the NO<sub>2</sub> measurement results – lower than during the heating season. In case of 2.LMp, 3.LMp and 6.LMp the NO<sub>x</sub> measurement results can also reflect the impacts of traffic. The

 $NO_x$  hourly and daily values show an almost identical run-off profile as in case of  $NO_2$ , and they can well characterise the daily volatility. Similarly to  $NO_2$ ,  $NO_x$  concentration values were higher in the morning between 04.00-09.00 hours and in the evening between 17.00-24.00 hours. The highest measured hourly  $NO_x$  values dominantly occurred during the morning hours and the relevant values were between 128  $\mu$ g/m<sup>3</sup> and 401  $\mu$ g/m<sup>3</sup>. There was no value exceeding the 24-hour limit, and the daily average values were not higher than 32% of the 24-hour limit.

The baseline NO<sub>x</sub> pollution of the area is  $30 \ \mu g/m^3$ .

## 16.2.2.6.3 SO<sub>2</sub> summary of measurement results

| 2-week average concentrations<br>(μg/m <sup>3</sup> )<br>Limit: Hourly 250 μg/m3, 24-hour 125 μg/m3 |   |   |   |   |   |     |
|-----------------------------------------------------------------------------------------------------|---|---|---|---|---|-----|
| Measuring points 1. test 2. test 3. test 4. test 5. test                                            |   |   |   |   |   |     |
| 1. LMp - Plant area                                                                                 | 3 | 1 | 1 | 1 |   | 1,5 |
| <ol><li>LMp – Next to the northern access road</li></ol>                                            | 1 | 1 | 1 | 5 |   | 2   |
| 3. LMp - Meteorological Station                                                                     | 1 | 1 | 1 | 2 | - | 1,3 |
| 4. LMp - Csámpa, Kis street                                                                         | 1 | 1 | 1 | 4 |   | 1,8 |
| 5. LMp - (Dunaszentbenedek, Dam keeper house)<br>Dunaszentbenedek, Rózsa street                     | - | 1 | 1 | 4 | 4 | 2,5 |
| 6. LMp - OVIT telep, Dankó Pista u. 1.                                                              | 1 | 1 | 1 | 5 | - | 2   |
| The baseline SO <sub>2</sub> pollution of the area                                                  |   |   |   |   |   | 2   |

Table 16.2.2-69: SO2 immission measurement results

The measured hourly SO<sub>2</sub> immission values were well below the 250  $\mu$ g/m3 hourly limit. The highest hourly values represented only 4% of the hourly limit. 24-hour average concentration was also below 10% of 125  $\mu$ g/m<sup>3</sup> daily limit.

The baseline SO<sub>2</sub> pollution of the area is  $2 \mu g/m^3$ .

## 16.2.2.6.4 CO summary of measurement results

| 2-week average concentrations                            |         |     |     |     |     |     |  |
|----------------------------------------------------------|---------|-----|-----|-----|-----|-----|--|
|                                                          | (µg/m³) |     |     |     |     |     |  |
| Limit: Hourly 10 000 µg/m³, 24-hour 5 000 µg/m³          |         |     |     |     |     |     |  |
| Measuring points 1. test 2. test 3. test 4. test 5. test |         |     |     |     |     |     |  |
| 1. LMp - Plant area                                      | 564     | 396 | 348 | 564 |     | 468 |  |
| Value exceeding limit                                    |         | 0   | pcs |     |     |     |  |
| 2. LMp - Next to the northern access road                | 563     | 356 | 446 | 733 |     | 525 |  |
| Value exceeding limit 0 pcs                              |         |     |     |     |     |     |  |
| 3. LMp - Meteorological Station                          | 744     | 519 | 441 | 569 | -   | 568 |  |
| Value exceeding limit                                    |         | 0   | pcs |     |     |     |  |
| 4. LMp - Csámpa, Kis street                              | 550     | 380 | 624 | 638 |     | 548 |  |
| Value exceeding limit                                    |         | 0   | pcs | -   |     |     |  |
| 5. LMp - (Dunaszentbenedek, Dam keeper house)            |         | 306 | 567 | 909 | 595 | 594 |  |
| Dunaszentbenedek, Rózsa street                           | -       | 300 | 507 | 505 | 555 |     |  |
| Value exceeding limit                                    | 0 pcs   |     |     |     |     |     |  |
| 6. LMp - OVIT telep, Dankó Pista u. 1.                   | 378     | 434 | 351 | 614 |     | 444 |  |
| Value exceeding limit                                    | 0 pcs   |     |     |     |     |     |  |
| The baseline CO pollution of the area                    |         |     |     |     |     | 525 |  |

Table 16.2.2-70: CO immission measurement results

The measured hourly CO immission values were always well below the 10 000  $\mu$ g/m<sup>3</sup> hourly limit. The highest measured hourly concentration value was 1994  $\mu$ g/m<sup>3</sup>, which corresponds to 20% of the limit. Average concentration values calculated from the 8-hour moving maximum values remained below 22% of the 24-hour limit (5 000  $\mu$ g/m<sup>3</sup>). CO measurement results showed a volatility in line with the heating-non-heating seasons.

The baseline CO pollution of the area is  $525 \,\mu g/m^3$ .

| 16.2.2.6.5 PM <sub>10</sub> summary o | of measurement results |
|---------------------------------------|------------------------|
|---------------------------------------|------------------------|

| 2-week average concentrations                         |               |         |         |         |         |      |
|-------------------------------------------------------|---------------|---------|---------|---------|---------|------|
|                                                       | (µg/m³)       |         |         |         |         |      |
| Limit: 24-hour 50 µg/m <sup>3</sup>                   |               |         |         |         |         |      |
| Measuring points                                      | 1. test       | 2. test | 3. test | 4. test | 5. test | Avrg |
| 1. LMp - Plant area                                   | 45            | 20      | 20      | 38      |         | 31   |
| Value exceeding limit                                 | 5 days        | 0 d     | ays     | 2 days  |         |      |
| 2. LMp - Next to the northern access road             | 21            | 16      | 18      | 33      |         | 22   |
| Value exceeding limit                                 | 0 days 1 days |         |         |         |         |      |
| 3. LMp - Meteorological Station                       | 48            | 17      | 24      | 24      | -       | 29   |
| Value exceeding limit                                 | 5 days        | 0 d     | ays     | 1 days  |         |      |
| 4. LMp - Csámpa, Kis street                           | 33            | 17      | 22      | 37      |         | 27   |
| Value exceeding limit                                 |               | 0 days  |         | 1 days  |         |      |
| 5. LMp - (Dunaszentbenedek, Dam keeper house)         |               | 10      | 37      | 34      | 26      | 20   |
| Dunaszentbenedek, Rózsa street                        | -             | 19      | 57      | 54      | 20      | 23   |
| Value exceeding limit                                 |               | 0 days  | 1 days  | 2 days  | 0 days  |      |
| <ol><li>LMp - OVIT telep, Dankó Pista u. 1.</li></ol> | 27            | 32      | 19      | 26      | _       | 26   |
| Value exceeding limit                                 | 0 days        | 1 days  | 0 d     | ays     | -       |      |
| Baseline PM <sub>10</sub> pollution of the area       |               |         |         |         |         | 27   |

Table 16.2.2-71: PM<sub>10</sub> immission measurement results

The  $PM_{10}$  measurements/tests results measured between January 24, 2012 and March 28, 2013 were higher than the limit for 19 days. As prescribed by Appendix 1 of Decree 4/2011. (I. 14.) VM on air load limits and emission limits for stationary air polluting point sources the 50 µg/m<sup>3</sup> 24-hour limit may be exceeded not more than 35 times during one calendar year. The number of vases when the limit was exceeded was lower than permitted during the  $PM_{10}$  measurements/tests performed during the 336-day period at 6 measuring stations. Having analysed the results for measurements held in the region and other points of the country we can state that the measured high values are almost identical with the results of national measurements/tests.

The baseline  $PM_{10}$  pollution of the area is  $27 \ \mu g/m^3$ .

| 16.2.2.6.6 | TSPM summar | y of measurement results |
|------------|-------------|--------------------------|
|------------|-------------|--------------------------|

| 2-week average concentrations<br>(μg/m <sup>3</sup> )<br>Limit: - |         |         |         |         |         |      |
|-------------------------------------------------------------------|---------|---------|---------|---------|---------|------|
| Measuring points                                                  | 1. test | 2. test | 3. test | 4. test | 5. test | Avrg |
| 1. LMp - Plant area                                               | 54      | 28      | 33      | 42      |         | 39   |
| <ol><li>LMp - Next to the northern access road</li></ol>          | 25      | 24      | 27      | 35      |         | 28   |
| 3. LMp - Meteorological Station                                   | 53      | 29      | 38      | 27      | -       | 37   |
| 4. LMp - Csámpa, Kis street                                       | 48      | 24      | 29      | 39      |         | 35   |
| 5. LMp - Dunaszentbenedek, (Dam keeper house);<br>Rózsa street    | -       | 34      | 41      | 36      | 34      | 36   |
| 6. LMp - OVIT telep, Dankó Pista u. 1.                            | 39      | 49      | 22      | 28      | -       | 35   |
| Baseline TSPM pollution of the area                               |         |         |         |         |         | 35   |

Table 16.2.2-72: TSPM immission measurement results

The effective Decree 4/2011. (I. 14.) VM defines no limit for TSPM. The former (annulled) Decree 14/2001.(V.9.) KöM-EüM-FVM defines for TSPM 200  $\mu$ g/m<sup>3</sup> hourly, 100  $\mu$ g/m<sup>3</sup> 24-hour, and 50  $\mu$ g/m<sup>3</sup> annual limit. Thus we compared the measurement results with the limit defined by the former Decree. The limit was exceeded only once, where the value was 155% of the "former limit". The 24-hour TSPM concentration values were below 54% of the former limit.

The baseline TSPM pollution of the area is  $35 \,\mu\text{g/m}^3$ .

| (μg/m³)<br>Limit: -                       |        |        |        |        |            |        |         |
|-------------------------------------------|--------|--------|--------|--------|------------|--------|---------|
| Measurements/tests                        | 1. LMp | 2. LMp | 3. LMp | 4. LMp | 5. LMp     | 6. LMp | Average |
| 1.                                        | 1,0    | 1,2    | 0,7    | 0,4    | 0,5        | 0,6    | 0,7     |
| 2.                                        | 1,8    | 1,6    | 1,2    | 1,9    | 1,3        | 1,8    | 1,6     |
| 3.                                        | 2,2    | 2,2    | 2,0    | 5,8    | 3,2        | 4,2    | 3,3     |
| 4.                                        | 6,6    | 2,6    | 4,6    | 8,0    | 5,1        | 7,7    | 5,8     |
| 5.                                        | 3,7    | 3,7    | 2,5    | 10,3   | 3,3        | 3,8    | 4,6     |
| 6.                                        | 3,5    | 2,3    | 2,0    | 4,0    | 4,3        | 4,3    | 3,4     |
| 7.                                        | 5,2    | 1,6    | 3,1    | 6,4    | 4,8 (2,1*) | 1,9    | 3,8     |
| 8.                                        | 2,3    | 3,7    | 2,1    | 5,1    | 2,8 (4,7*) | 2,3    | 3,1     |
| 9.                                        | 0,6    | 0,9    | 0,5    | 3,5    | 1,5*       | 0,9    | 1,3     |
| 10.                                       | 0,5    | 0,8    | 0,7    | 1,1    | 1,3*       | 1,2    | 0,9     |
| 11.                                       | 0,3    | 0,8    | 0,4    | 0,6    | 1,2*       | 0,8    | 0,7     |
| 12.                                       | 0,9    | 1,6    | 1,0    | 0,8    | 3,5*       | 1,6    | 1,6     |
| 13.                                       | 0,9    | 1,3    | 1,3    | 2,7    | 1,2*       | 0,5    | 1,3     |
| Baseline settling dust pollution of the a | area   |        |        |        |            |        | 2,5     |

## 16.2.2.6.7 Settling dust summary of measurement results

\*Dunaszentbenedek, Rózsa street

Table 16.2.2-73: Settling dust measurement results

Decree 4/2011. (I. 14.) VM defines no limit for settling dust. The former (annulled) Decree 14/2001.(V.9.) KöM-EüM-FVM defines 16 g/m<sup>2</sup> x 30 day and 120 t/km<sup>2</sup> x year limit. The measured settling dust concentration values never exceeded the former limit, and the highest measured value was 65% of the limit.

Between July 31, and October 12, 2012 we held measurements/tests at both measuring points at Dunaszentbenedek, at the dam keeper house and in Rózsa street. As the settling dust load values were low at both measuring points during this parallel test series and the original task required that the settling dust test are held at the same point as other air pollution measurements/tests, there was no professional reason for continuing the settling dust test at Dam keeper house.

The baseline settling dust pollution of the area is  $2.5 \,\mu g/m^3$ .

## 16.2.2.6.8 O<sub>3</sub> summary of measurement results

| 2-week average concentrations<br>(μg/m³)<br>Limit: 24-hour 120 μg/m³ |                                                          |       |       |    |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------|-------|-------|----|--|--|
| Measuring points                                                     | Measuring points 1. test 2. test 3. test 4. test 5. test |       |       |    |  |  |
| 6. LMp - Paks, Dankó Pista street 1. OVIT site 57 106 31 30          |                                                          |       |       | 56 |  |  |
| Value exceeding limit                                                | 0 pcs                                                    | 1 pcs | 0 pcs |    |  |  |

Table 16.2.2-74: O3 measurement results

The maximum value of the  $O_3$  daily 8-hour moving average concentrations was once higher than the limit, and this value was 121 µg/m<sup>3</sup>. The referred value was less than 1% higher than the limit.

The baseline  $O_3$  pollution of the area is 56  $\mu$ g/m<sup>3</sup>.

NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, CO, PM<sub>10</sub>, TSPM, settling dust, and O<sub>3</sub> concentration values measured between January 24, 2012 and March 28, 2013 were lower, and remained below the limits permitted for PM<sub>10</sub>. Based on these measurement results we may state that the ambient air quality was excellent in respect of SO<sub>2</sub>, CO air pollutants, and fair regarding NO<sub>2</sub>, PM<sub>10</sub> and O<sub>3</sub> pollutants.

# 16.2.3 AIR LOADABILITY

Based on the assessment of measurement results we determined the loadability values of the area in accordance with Article 2. § 40 of Government Decree 306/2010. on air protection measurements.

The air loadability level is the difference between the air pollution limit and the baseline air load as it follows.

| Air pollutant                      | Baseline air load | Hourly air pollution limit | Loadability |
|------------------------------------|-------------------|----------------------------|-------------|
|                                    |                   | (µg/m <sup>3</sup> )       |             |
| Sulphur-dioxide (SO <sub>2</sub> ) | 2                 | 250                        | 248         |
| Nitrogen dioxide (NO2)             | 24                | 100                        | 76          |
| Nitrogen oxides (NOx)              | 30                | -                          | -           |
| Carbon monoxide (CO)               | 525               | 10 000                     | 9 475       |
| Particulate matter (PM10)          | 27                | -                          | -           |
| Particulate matter TSPM            | 35                | 200                        | 165         |

Table 16.2.3-1: Summary assessment of 2012 baseline measurements/tests and air loadability

## **16.3 MODELLING OF PROPAGATION OF NON-RADIOACTIVE AIR POLLUTANTS**

Modelling of propagation of non-radioactive air pollutants emitted by the new nuclear plant units planned at Paks site, and the relevant impact zones were defined for the following cases:

I. Analysis of emission of the planned nuclear plant

Propagation simulations for the area with 30 km radius

II. Analysis of emission related to the planned nuclear plant

Modelling of air pollutants caused by traffic for the area with 25 radius, as prescribed by the Decree

During the modelling works we determined the additional load caused by conventional air pollutants emitted during both the construction and operation periods, and then, based on the results and in conformity with the requirements of the Decree, we also delineated the direct and indirect and cross-border impact areas of the planned development.

# **16.3.1** THE APPLIED MODEL

We calculated the impacts of nuclear plant units to be constructed during the planned project onto air quality with models simulating various atmospheric propagations. We estimated the distribution of non-radioactive polluting materials arising from implementation and operation of Paks II., prepared the air quality prognosis and defined the impact zones using the Gauss-type model of the TREX model family.

The Gauss-type models are based on the so-called Gauss equation:

$$c(x, y, z) = \frac{Q}{2\pi\sigma_y \sigma_z u} \exp\left(\frac{-y^2}{2\sigma_y^2}\right) \left[\exp\left(\frac{-(z-z_p)^2}{2\sigma_z^2}\right) + \exp\left(\frac{-(z+z_p)^2}{2\sigma_z^2}\right)\right]$$

where:

c (x, y, z) - the value of concentration in (x, y, z) coordinate [mass unit/volume],

Q - the quality of the emitted material [mass unit / unit of time],

- $\sigma y$  deviation parameter in y direction [m],
- $\sigma z$  deviation parameter in z direction [m],
- u wind speed at height at the time of emission [m/unit of time],

zp – the height of emission [m].

We define the  $\sigma_y$  and  $\sigma_z$  deviation parameters based on the stability and using the Monin–Obukhov similarity equation, and performing additional calculations in accordance with MSZ 21457-4:2002 and MSZ 21457-7:2002 standards.

Thermal energy related to the atmosphere is also required for describing the turbulent processes and thermal turbulence. The thermal energy of soil (*G*) is the sensible thermal quantity crossing the soil surface, transported by the water vapour content of the vortex and the latent thermal flow (*LE*), and absorbed and released during the phase transformation process (*H*). The product of the equilibrium of the global radiation (*S*) and radiation (*R*) is required for quantifying the thermal turbulence. The global radiation defines the total short wave radiation quantity arriving from the higher air layers onto one unit of surface, and its value can be calculated with the following formulae:

$$S = (a_1 \sin \phi + a_2)(1 + b_1 N^{b^2}),$$

where

 $a_1$  and  $a_2$  empiric constants,  $b_1$  and  $b_2$  cloud constants, N degree of cloud cover  $\phi$  solar height.

The value of global radiation is defined in W/m<sup>-2</sup>. We calculate the balance of radiation – as the quantity of radiation of radiation arriving at one unit of horizontal surface and emitted from this surface during one unit of time – with the following equation:

$$R = \frac{S(1-A) + c_1 T^6 - \sigma_{SB} T^4 + c_2 N}{1 + c_3},$$

where:

A – the albedo,

T – surface temperature [K], and we approach this value using the temperature determined in practice next to the relevant surface (typically at 2 m height),

N - the quantity of cloudiness (nebulosity),

 $\sigma_{SB}$  – Stefan–Boltzmann constant, value: 5,67 10<sup>-8</sup> [Wm<sup>-2</sup>K<sup>-4</sup>]

 $c_1-$  long wave radiation constant, value: 5,31  $10^{-13}\,[Wm^{-2}K^{-6}]$ 

c<sub>2</sub> – nebulosity constant, value: 60 [Wm<sup>-2</sup>]

c<sub>3</sub> – surface warming constant, value: 0,12 (-)

Based on the measured (and derivative) meteorological data and the values calculated with the above parametrics we calculate the close-to-surface dynamic parameter values applying the iteration process described in MSZ 21457-4:2002-ben.

We performed simulations using the Gauss-type model for artificially conservative meteorological conditions and real meteorological conditions. In the latter case we prepared the calculations for 1 full year using the hourly and 3-hour meteorological database.

Gauss-type models are based on point-like meteorological data, thus the meteorological conditions present a stationary constant state at the emission point, thus the direction of propagation dominantly depends upon the wind direction measured at the emission point; and the concentration field has a Gauss distribution perpendicular along wind direction from the source. We assumed that the emission was constant and continuous in time during the simulations; thus the result we got was a geometric tail, where the theory of mass conservation will apply. We can determine the distribution width based on the relevant atmosphere conditions and the time elapsed since the emission.

This type of concentration calculation has the advantage that the mathematical calculations can be extremely quickly prepared, thus simulations can run almost simultaneously, moreover, it can manage the chemical processes, sedimentation, and reflection from the planetary boundary layer. It can be successfully applied for local pollution modelling, as it provides prompt results for the propagation direction of the tail. If we perform a large-quantity simulation with the Gauss-type model we can also prepare statistical analyses for longer time horizon. There is a disadvantage, namely that it cannot manage special volatility of meteorological fields, and thus it is not applicable for simulating polluting material propagation on longer distances.

## 16.3.2 DATA CHARACTERISTIC FOR SOURCE ENVIRONMENT

We need the quantities and the relevant functions that describe the relevant characteristics for the atmosphere in order that we can prepare the propagation calculations.

The characteristic data for source environment regarding air pollution propagation calculation are as it follows:

- land roughness height.
- most frequent meteorological conditions (wind direction, wind speed, stability)
- 16.3.2.1 Land roughness-height

We determined the land roughness height based on the type and articulation of the land.

The baseline data for this calculation was the categories of land cover determined for the environment of the area with 30 and 3 km radius based on the aerial photography in 2013.



Figure 16.3.2-1: Map of surface cover and land use in 30 km radius area in 2013 – with colour codes
# Statistics of surface cover categories in 30 km radius area in 2013

| Surface cover |                                                                           | Catego                         | Category |  |  |  |  |
|---------------|---------------------------------------------------------------------------|--------------------------------|----------|--|--|--|--|
| category      | Name of surface cover                                                     | propaga<br>(ادس <sup>2</sup> ) | (%)      |  |  |  |  |
| 112           | Non-coherent settlement structure                                         | (NIII)<br>52.00                | 1.87     |  |  |  |  |
| 112           | Non-coherent settlement structure, with multi-stopy houses without garden | 3 30                           | 0.12     |  |  |  |  |
| 1121          | Non-coherent setuement structure, with mutu-story houses without garden   | 51 78                          | 1.83     |  |  |  |  |
| 122           | Industrial and commercial units                                           | 8.88                           | 0.31     |  |  |  |  |
| 1211          | Industrial and commercial facilities                                      | 4 34                           | 0,51     |  |  |  |  |
| 12111         |                                                                           | 9,71                           | 0,13     |  |  |  |  |
| 12112         | Agrandin addition                                                         | 0.71                           | 0,31     |  |  |  |  |
| 12113         | Special technical facilities                                              | 3.02                           | 0,01     |  |  |  |  |
| 1212          | Special technical lacinities                                              | 0.16                           | 0,14     |  |  |  |  |
| 1221          | Airfielde with colid surface rupway                                       | 9,10                           | 0,32     |  |  |  |  |
| 124           | Annelos with solid surface furliway                                       | 4,40                           | 0,10     |  |  |  |  |
| 1311          | Open-cast mines                                                           | 1,03                           | 0,04     |  |  |  |  |
| 132           | Depositories, refuse pit neaps                                            | 0,08                           | 0,02     |  |  |  |  |
| 1322          | Depositories for huid wastes                                              | 0,08                           | <0,01    |  |  |  |  |
| 141           | Green areas within cities                                                 | 0,69                           | 0,02     |  |  |  |  |
| 1412          |                                                                           | 0,34                           | 0,01     |  |  |  |  |
| 1421          | Sport raciities                                                           | 0,48                           | 0,02     |  |  |  |  |
| 1422          | Recreational areas                                                        | 0,67                           | 0,02     |  |  |  |  |
| 1423          |                                                                           | 0,25                           | 0,01     |  |  |  |  |
| 2111          | Large-scale arable lands without irrigation                               | 1595,65                        | 56,44    |  |  |  |  |
| 2112          | Small-scale arable lands without irrigation                               | 211,31                         | /,4/     |  |  |  |  |
| 2211          |                                                                           | 63,14                          | 2,23     |  |  |  |  |
| 222           | Urchards, berries                                                         | 5,98                           | 0,21     |  |  |  |  |
| 231           | Intensive pastures and very degraded lawn areas                           | 110,88                         | 3,92     |  |  |  |  |
| 2311          | Intensive pastures and very degraded lawn areas without bushes and trees  | 19,02                          | 0,67     |  |  |  |  |
| 2312          | Intensive pastures and very degraded lawn areas with bushes and trees     | 9,37                           | 0,33     |  |  |  |  |
| 242           | Complex cultivation structure                                             | 36,93                          | 1,31     |  |  |  |  |
| 2421          | Complex cultivation structure without buildings                           | 2,85                           | 0,10     |  |  |  |  |
| 2422          | Complex cultivation structure with scattered buildings                    | 6,75                           | 0,24     |  |  |  |  |
| 243           | Primarily agricultural                                                    | 49,38                          | 1,75     |  |  |  |  |
| 311           | Broadleaf forests                                                         | 257,91                         | 9,12     |  |  |  |  |
| 312           | Coniferous forests                                                        | 24,95                          | 0,88     |  |  |  |  |
| 313           | Mixed forests                                                             | 24,99                          | 0,88     |  |  |  |  |
| 321           | Natural lawns, near-nature meadows                                        | 58,02                          | 2,05     |  |  |  |  |
| 3211          | Natural lawn without trees and shrubs                                     | 7,29                           | 0,26     |  |  |  |  |
| 3212          | Natural lawn with trees and shrubs                                        | 12,11                          | 0,43     |  |  |  |  |
| 3241          | Young forests and cutting zones                                           | 2,82                           | 0,10     |  |  |  |  |
| 3243          | Spontaneous areas with shrubs, bushes and trees                           | 45,34                          | 1,60     |  |  |  |  |
| 333           | Thin vegetation                                                           | 3,99                           | 0,14     |  |  |  |  |
| 4111          | Freshwater swamps                                                         | 26,69                          | 0,94     |  |  |  |  |
| 4113          | Saline swamps                                                             | 1,09                           | 0,04     |  |  |  |  |
| 412           | Peat swamps                                                               | 29,88                          | 1,06     |  |  |  |  |
| 5111          | Running waters                                                            | 49,68                          | 1,76     |  |  |  |  |
| 5112          | Channels                                                                  | 1,33                           | 0,05     |  |  |  |  |
| 5121          | Natural lakes                                                             | 13,12                          | 0,46     |  |  |  |  |
| 5122          | Artificial lakes, water reservoirs, fishponds                             | 0,98                           | 0,03     |  |  |  |  |
| 51221         | Artificial lakes, water reservoirs                                        | 0,84                           | 0,03     |  |  |  |  |
| 51222         | Fishponds                                                                 | 3,23                           | 0,11     |  |  |  |  |
|               | Total                                                                     | 2827,31                        | 100      |  |  |  |  |

Table 16.3.2-1: Surface cover and land use in 30 km radius test area – statistics for 2013.

Land usage on the area within 30 km radius area in 2013 can be characterised by the following:

- the land use form with the highest share in the region (56%) is large scale, not irrigated arable land cultivation
- 9 % deciduous forest area
- small scale arable land, small scale agricultural cultivation area 7,5 %
- intensive pasture and highly degraded grazing land representing ~4% in the region can be also regarded as somewhat characteristic land use
- Other forms of area usage cannot be regarded as substantial.

The following table presents the characteristic **roughness values** relevant to various surface types in accordance with the effective MSZ 21457:2002 standard, where the category characteristic for the studied area are shown with bold.

| Surface type a                                                      | <sup><i>z</i><sub>0</sub></sup> , m |
|---------------------------------------------------------------------|-------------------------------------|
| water surface [511–523]                                             | 0,0003                              |
| flat soil without vegetation [331]                                  | 0,003                               |
| low vegetation, grassland [321, 333]                                | 0,005                               |
| medium vegetation on flat area [322]                                | 0,02                                |
| vegetation on flat area with grass, shrubs, bushes, trees [323–324] | 0,05                                |
| agricultural area (active) [211–213, 221–223, 231, 241–244]         | 0,15                                |
| high vegetation (without trees) [323]                               | 0,25                                |
| thin forest (~9 m) with low trees [311, 312]                        | 0,8                                 |
| medium density forest, with medium-size (~17 m) trees [311, 312]    | 1,7                                 |
| dense forest, with high (~25 m) trees [311, 312]                    | 2,5                                 |
| small settlement, scattered low buildings [111]                     | 0,85                                |
| village, small town [112]                                           | 0,75                                |
| city (medium size) [111]                                            | 1,0                                 |
| larger city (1–6 story buildings) [111]                             | 1,5                                 |
| large city, high buildings, tower blocks [111]                      | 2,0                                 |
| Industrial area with low buildings [121–124, 131–133]               | 1,2                                 |

Table 16.3.2-2: Values of roughness-heigth parameter for various type surfaces

Land usage on the area within 3 km radius area in 2013 can be characterised by the following:

- "large scale, not irrigated arable land cultivation" represent the highest share (31%)
- "deciduous forest areas" cover 15% (rounded-up)
- "rivers and channels" represent 11 %
- "special technical facilities" represent 10 %
- "coniferous forest" represents 8 %
- "intensive pastures and degraded grazing lands" represent 6 %
- the other forms of land use represent ignorable share.

The following table presents the characteristic roughness values relevant to various surface types in accordance with the effective MSZ 21457:2002 standard

| Surface type a                                              | $z_{0}$ , m |
|-------------------------------------------------------------|-------------|
| water surface [511–523]                                     | 0,0003      |
| low vegetation, grassland puszta [321, 333]                 | 0,005       |
| agricultural area (active) [211–213, 221–223, 231, 241–244] | 0,15        |
| thin forest with low (~9 m) trees [311, 312]                | 0,8         |
| larger city (1–6 story buildings) [111]                     | 1,5         |

Table 16.3.2-3: Values of roughness-heigth parameter for various type surfaces

Based on the above we used during the calculations z0=0,25 m land roughness height value.

# 16.3.2.2 "Most frequent meteorological condition"

Definition of the most frequent meteorological condition can be characterised with the following.

### 16.3.2.2.1 Wind direction, average wind speed

Wind has been measured at **OMSz Paks station** since 1997 using an automatic VAISALA WAA type wind measuring instrument installed at a height 9.8 m above ground level. The time that has elapsed since then is long enough for performing climate surveys, thus wind data measured long ago using other methods (mechanical) were not used for the analysis, only results of measurements/tests held between 1997-2010.

The **wind direction** is the direction from where the wind is blowing. The wind direction that has the highest frequency of occurrence is called the ruling wind direction.

First we analysed the relative frequency of wind directions on annual level, and then we displayed the results of summer and winter seasons on a common diagram for better comparison (Figure 16.3.2-2).



A szélirányok relatív gyakorisága [%] az évben Paks állomáson - Wind directions relative frequency on annual level [%] based on tests held in Paks station A szélirányok relatív gyakorisága [%] a téli és a nyári félévben Paks állomáson - Wind directions relative frequency during the summer-winter season [%] based on tests held in Paks station

szélcsend - calm, nyári félév - summer semester, téli félév - winter semester É-N, K-E, D-S, NY-W

Figure 16.3.2-2: Wind directions relative frequency on annual level [%], and during the summer-winter season [%] based on tests held in Paks station between 1997-2010

It can be seen that at Paks region the most frequent wind comes from NW (11,6%) and NNW (11%) on annual level, followed by S direction (8,1%). During summer season NNW is the dominant direction (12,7%), then NW (12,2%) and N (8,9%), so S direction was the fourth (6,7%). During winter season the ruling wind direction is NW (10,8%), and second is S (9,6%), and the third is NNW (9,1%).

The following diagram presents the **average wind speed values** at Paks station starting from 1997. At the beginning of the 1997-2010 we could measure 1,9-2 m/s, and in recent years 1,6-1,7 m/s average values, thus we can see a reducing trend in the annual average wind speed. The reason for decreasing wind speed is most probably the natural volatility in the climate. This phenomenon can be also observed in the time scale measured at Baja, and partly at Tevel and Soltvadkert.



Évi átlagos szélsebesség Paks állomáson - Annual average wind speed at Paks station

Figure 16.3.2-3: Annual average wind speed [m/s] between 1997-2010, and multi-year average (1997-2010) at Paks station

In case of stronger air movement, when the average wind speed is higher than 3 m/s, wind are dominantly blowing from northwest, north-northwest.

Data with 10-minute resolution and recorded by the **Paks measuring tower** were available from 2006 November. PA Zrt. owns the measurement/test results obtained at three levels (20, 50 and 120 metres), so they do not form part of the OMSZ meteorological database, thus contrary to the above presented wind data they did not go through the standard multi-level data control and replacement processes. As the first level of data procession we converted the obtained data in format that allows procession, and then we tried to filter out the erroneous data. We could process only the wind data due to shortage and format of data series and due to defaults and missing data in certain data series, but we wish to emphasise that the presented results are of informative nature due to the quality of the available data.

The measuring tower is 20 metre high (Figure 16.3.2-4) where based on data of the seven years of study the NNW wind direction was the ruling direction (14%), and N was also the second most frequent direction. S (8,7%) and SSE (8,3%) were also quite frequent directions.



A szélirányok relatív gyakorisága [%] 20 méteres magasságban - Wind directions relative frequency [%] at 20 m height É-N, K-E, D-S, NY-W

Figure 16.3.2-4: Wind direction relative frequency [%] at Paks measuring tower at 20 m height

# Average wind speed

The wind speed increases in the troposphere in line with height, and this is well reflected on the figures that process the 10-minute average wind speed values measured at various levels figures. At 20 metre height the frequency of the 2-4 m/s range is hardly higher than in the lower range.



# Az átlagos szélsebesség relatív gyakorisága [%]

Az átlagos szélsebesség relatív gyakorisága [%] 20 méteres magasságban - Average wind speed relative frequency [%] at 20 m height

Figure 16.3.2-5: Average wind speed relative frequency [%] at Paks measuring tower at 20 m height

# 16.3.2.2.2 Atmospheric stability conditions

The following table presents the synoptic wind speed and relative frequency of wind direction according to the Pasquil index for Paks station on annual level (1997-2010).

|             | Synoptic wind speed and wind direction - Relative frequency based on Pasquil-index |                      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |
|-------------|------------------------------------------------------------------------------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
|             | Pasquil-index                                                                      | No wind/<br>variable | N   | NNE | NE  | ENE | E   | ESE | SE  | SSE | S   | SSW | SW  | WSW | w   | WNW | NWY | NNW | Total |
| [0,0 - 0,1) | A – very unstable                                                                  | 0,0                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 0,0   |
|             | B – moderately unstable                                                            | 0,1                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 0,1   |
|             | C – slightly unstable                                                              | 0,1                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 0,1   |
|             | D – neutral                                                                        | 0,6                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 0,6   |
|             | E – slightly stable                                                                | 0,6                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 0,6   |
|             | F – very stable                                                                    | 3,7                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 3,7   |
| [0,1 – 1,1) | А                                                                                  |                      | 0,1 | 0,0 | 0,1 | 0,1 | 0,0 | 0,1 | 0,1 | 0,0 | 0,1 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,9   |
|             | В                                                                                  |                      | 0,1 | 0,0 | 0,1 | 0,1 | 0,2 | 0,1 | 0,2 | 0,0 | 0,1 | 0,1 | 0,0 | 0,1 | 0,0 | 0,1 | 0,1 | 0,1 | 1,5   |
|             | С                                                                                  |                      | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,0 | 0,1 | 0,1 | 0,0 | 0,1 | 0,1 | 1,3   |
|             | D                                                                                  |                      | 0,7 | 0,3 | 0,3 | 0,2 | 0,2 | 0,3 | 0,3 | 0,4 | 0,3 | 0,3 | 0,3 | 0,4 | 0,6 | 0,7 | 0,7 | 0,6 | 6,8   |
|             | E                                                                                  |                      | 0,5 | 0,5 | 0,2 | 0,1 | 0,1 | 0,1 | 0,2 | 0,2 | 0,2 | 0,2 | 0,1 | 0,2 | 0,2 | 0,2 | 0,2 | 0,4 | 3,6   |
|             | F                                                                                  |                      | 1,3 | 1,1 | 0,5 | 0,2 | 0,2 | 0,1 | 0,5 | 0,7 | 0,7 | 0,6 | 0,8 | 0,8 | 0,6 | 1,0 | 1,1 | 1,4 | 11,5  |
| [1,1 – 2,1) | А                                                                                  |                      | 0,2 | 0,3 | 0,5 | 0,5 | 0,3 | 0,3 | 0,4 | 0,3 | 0,2 | 0,2 | 0,2 | 0,1 | 0,2 | 0,1 | 0,1 | 0,1 | 4,0   |
|             | В                                                                                  |                      | 0,3 | 0,3 | 0,6 | 0,5 | 0,3 | 0,4 | 0,5 | 0,4 | 0,3 | 0,3 | 0,2 | 0,2 | 0,3 | 0,3 | 0,3 | 0,3 | 5,6   |
|             | С                                                                                  |                      | 0,2 | 0,3 | 0,2 | 0,3 | 0,2 | 0,3 | 0,4 | 0,2 | 0,4 | 0,2 | 0,2 | 0,2 | 0,2 | 0,2 | 0,4 | 0,3 | 4,1   |
|             | D                                                                                  | 0,0                  | 0,7 | 0,5 | 0,5 | 0,4 | 0,3 | 0,3 | 0,5 | 0,6 | 0,6 | 0,3 | 0,2 | 0,6 | 0,7 | 0,9 | 1,1 | 1,1 | 9,3   |
|             | E                                                                                  |                      | 0,2 | 0,2 | 0,2 | 0,0 | 0,0 | 0,1 | 0,2 | 0,3 | 0,4 | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,2 | 0,3 | 2,8   |
|             | F                                                                                  |                      | 0,3 | 0,4 | 0,2 | 0,1 | 0,0 | 0,0 | 0,1 | 0,3 | 0,4 | 0,2 | 0,2 | 0,2 | 0,2 | 0,2 | 0,2 | 0,3 | 3,3   |
| [2,1 – 3,1) | А                                                                                  |                      | 0,2 | 0,3 | 0,3 | 0,2 | 0,0 | 0,0 | 0,1 | 0,2 | 0,4 | 0,2 | 0,1 | 0,1 | 0,2 | 0,1 | 0,1 | 0,1 | 2,7   |
|             | В                                                                                  |                      | 0,4 | 0,3 | 0,6 | 0,2 | 0,1 | 0,1 | 0,3 | 0,4 | 0,5 | 0,4 | 0,4 | 0,2 | 0,4 | 0,2 | 0,5 | 0,4 | 5,4   |
|             | С                                                                                  |                      | 0,3 | 0,3 | 0,3 | 0,1 | 0,1 | 0,1 | 0,2 | 0,2 | 0,3 | 0,2 | 0,2 | 0,2 | 0,2 | 0,3 | 0,5 | 0,5 | 4,1   |
|             | D                                                                                  |                      | 0,6 | 0,4 | 0,7 | 0,2 | 0,1 | 0,1 | 0,2 | 0,2 | 0,5 | 0,3 | 0,3 | 0,4 | 0,3 | 0,5 | 1,1 | 0,9 | 6,7   |
|             | E                                                                                  |                      | 0,0 | 0,1 | 0,1 | 0,0 |     |     | 0,0 | 0,0 | 0,1 | 0,0 | 0,1 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,7   |
|             | F                                                                                  |                      | 0,0 | 0,0 | 0,1 | 0,0 | 0,0 |     | 0,0 | 0,0 | 0,2 | 0,1 | 0,1 | 0,0 | 0,0 |     | 0,0 | 0,0 | 0,7   |
| [3,1 – 5,1) | A                                                                                  |                      | 0,0 | 0,2 | 0,0 |     |     |     | 0,0 | 0,0 | 0,1 | 0,1 | 0,1 | 0,1 | 0,0 | 0,0 | 0,0 | 0,1 | 0,9   |
|             | В                                                                                  |                      | 0,3 | 0,4 | 0,3 | 0,1 |     | 0,0 | 0,1 | 0,2 | 0,8 | 0,6 | 0,5 | 0,3 | 0,1 | 0,1 | 0,3 | 0,4 | 4,6   |

|                  | Synoptic wind speed and wind direction - Relative frequency based on Pasquil-index |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |      |     |       |
|------------------|------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|------|-----|-------|
|                  | Pasquil-index No wind/ N NNE NE ENE E ESE SE SE S SSW SW WSW W WNW NWY NNW Tota    |     |     |     |     |     |     |     |     |     |     |     |     |     |     | Total |      |     |       |
|                  | С                                                                                  |     | 0,5 | 0,3 | 0,2 | 0,1 |     | 0,1 | 0,3 | 0,1 | 0,4 | 0,2 | 0,2 | 0,2 | 0,1 | 0,3   | 0,7  | 0,6 | 4,0   |
|                  | D                                                                                  |     | 0,5 | 0,4 | 0,2 | 0,1 | 0,0 | 0,0 | 0,2 | 0,2 | 0,4 | 0,5 | 0,2 | 0,3 | 0,2 | 0,5   | 1,7  | 1,4 | 6,9   |
|                  | E                                                                                  |     |     | 0,0 | 0,0 |     |     |     |     | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 |       | 0,0  |     | 0,2   |
|                  | F                                                                                  |     | 0,0 | 0,0 | 0,0 |     |     |     |     |     | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 |       |      |     | 0,1   |
| [5,1 – 7,1)      | А                                                                                  |     |     | 0,0 |     |     |     |     |     |     |     | 0,0 |     |     |     |       |      |     | 0,0   |
|                  | В                                                                                  |     | 0,0 | 0,0 | 0,0 |     |     |     |     |     | 0,0 | 0,1 | 0,1 | 0,0 |     |       |      | 0,0 | 0,3   |
|                  | С                                                                                  |     | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 |     | 0,0 |     | 0,0 | 0,1 | 0,2 | 0,1 |     | 0,0   | 0,1  | 0,1 | 0,7   |
|                  | D                                                                                  |     | 0,0 | 0,1 | 0,0 |     |     |     | 0,0 | 0,0 | 0,0 | 0,1 | 0,1 | 0,2 | 0,1 | 0,1   | 0,7  | 0,4 | 1,8   |
|                  | E                                                                                  |     |     |     |     |     |     |     |     |     |     |     | 0,0 |     |     |       |      |     | 0,0   |
|                  | F                                                                                  |     |     |     |     |     |     |     |     |     |     |     | 0,0 |     |     |       |      |     | 0,0   |
| [7,1 – 10,1)     | А                                                                                  |     |     |     |     |     |     |     |     |     |     |     | 0,0 |     |     |       |      |     | 0,0   |
|                  | В                                                                                  |     |     |     |     |     |     |     |     |     |     |     | 0,0 | 0,0 |     |       |      |     | 0,0   |
|                  | С                                                                                  |     |     |     |     |     |     |     |     |     |     | 0,0 | 0,0 | 0,0 |     |       |      |     | 0,0   |
|                  | D                                                                                  |     | 0,0 | 0,0 |     | 0,0 |     |     |     |     |     | 0,0 | 0,0 | 0,0 | 0,0 | 0,0   | 0,1  | 0,0 | 0,3   |
|                  | Е                                                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |      |     |       |
|                  | F                                                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |      |     |       |
| [10,1 –<br>13,1) | А                                                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |      |     |       |
|                  | В                                                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |      |     |       |
|                  | С                                                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |      |     |       |
|                  | D                                                                                  |     |     |     |     |     |     |     |     |     |     |     | 0,0 |     |     |       | 0,0  | 0,0 | 0,0   |
|                  | E                                                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |      |     |       |
|                  | F                                                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |      |     |       |
| Total            |                                                                                    | 5,1 | 7,5 | 6,8 | 6,3 | 3,6 | 2,2 | 2,6 | 4,9 | 5,0 | 7,5 | 5,5 | 4,9 | 5,1 | 4,8 | 5,9   | 10,3 | 9,9 | 100,0 |

Table 16.3.2-4: Synoptic wind speed and relative frequency of wind direction according to Pasquill index [%] at Paks station on annual level (1997-2010)

# 16.3.3 METEOROLOGICAL DATABASES APPLIED FOR PROPAGATION SIMULATIONS

# 16.3.3.1 Average meteorological data for conservative estimate

We prepared conservative estimates based on climate data, average and values that are the most characteristic for the area.

The ruling wind direction characteristic to the area is north-western, and we defined it based on the annual average wind direction values measured at the Paks meteorological measuring tower at 120 m height above the surface in 10 degree resolution in order of size sequence for the period between 2000 and 2011 (Figure 16.3.3-1). The figure presents the northern wind between 320–40°, the eastern wind between 50–130°, the southern wind between 140–220°, and the western wind between 230–310° values. During the conservative estimate process we prepared estimates irrespective of direction, and the 10 degree frequency of every wind direction can provide sufficient information regarding the level of probability of occurrence of such wind directions in the given area. For the conservative estimate we used the climatic data, average and most characteristic values for the area.



északias - northern, keleties - eastern, délies - southern, nyugatias - western, szél – wind relatív gyakoriság (%) - relative frequency (%), szélirány (fok) - wind direction (degree)

Figure 16.3.3-1: Wind direction frequency measured at Paks measuring tower and its deviation in 10 degree resolution

We defined the **wind speed** values at Paks measuring tower at 20 and 120 metre levels based on the average values of measurements performed between 2002 and 2011, and the relevant average wind speed values at 20 m high was 2,52 m/s, and at 120 m it was 5,47 m/s.

**Temperature** data from measurements performed in the tower were not available, thus we used the average climatic temperature, which is  $10,7^{\circ}$  C for the area of the study. Assuming dry adiabatic temperature layering assuming that the temperature at 925 hPa pressure rate is 4,7 C, and on 850 hPa pressure rate  $-3,3^{\circ}$ C.

The geo-potential height for 925 hPa pressure level was taken as 700 m, while for 850 hPa level as 1 500 m.

We set the boundary layer height limit for the lowest value characteristic to the daytime hours (300 m), which is the most unfavourable for propagation of polluting materials.

We set nebulosity at 4 octas (50 % nebulosity rate), and the value of sensible thermal power as 100 W/m<sup>2</sup>.

# 16.3.3.2 Simulations using real meteorological database

Using real meteorological database we prepared the model simulations for one full year, based on hourly emission values.

Data of the meteorological measuring tower (120 m high) located at the site of Paks Nuclear Plant provided partly the meteorological data for the stimulation. The measurements were performed at 20, 50 and 120 m height with 10 minute average measuring time. Wind direction and wind speed values were available from the Paks measuring tower. We generated all other meteorological data that were required for the stimulations (as they were not available from the measurements held in the tower) from the output fields of the freely accessible American Global Forecast System (GFS) numeric forecasting model (http://www.emc.ncep.noaa.gov/GFS/doc.php [16-9]). GFS provides the meteorological database which is most widely used in the world and available free-of-charge, offering both archive data and forecasts alike.

The hydrostatic GFS model output fields are available in 0,5 × 0,5 degree spatial and 3 hour time resolution

The National Centres for Environmental Prediction (NCEP) developed the GFS, and it is at present running on the super computer of US National Weather Service (NWS). The assimilation of results from surface and remote sensor-operated measurements arriving from all parts of the world provide the initial conditions of the model (Global Data Assimilation System, GDAS). The latest measurement data are collected and model runs are held four times per day in every 6 hour. GFS is a hydrostatic, spectral-type model. In addition to the resolution of atmospheric flows, thermal and humidity transport controlling equations it is using enhanced parametrics for calculating impacts onto cloud formation, turbulence and surface atmosphere.

The model will provide the following data on 25 pressure rates between 10 and 1000 hPa:

- wind direction,
- wind speed,
- temperature,
- relative humidity,
- geo-potential height.

Through parametrics we also deleted from the GFS the surface parameters required for our calculations:

- ground level temperature,
- air temperature at 2 m height,
- relative humidity at 2 m height,
- nebulosity,
- wind direction at 10 m reference height,
- wind speed at 10 m reference height,
- boundary layer height,
- surface thermal energy (sensible, latent thermal energy),
- intensity of precipitation,
- state of precipitation.

Simulation results can be reached in 0.5 degree horizontal and 3-hour time resolution covering the entire globe. The archive (http://nomads.ncdc.noaa.gov/ [16-10]) is carefully maintained by the National Climatic Data Center (NCDC) and it works free-of-charge, where reliable results of models developed in the past years are available.

Using data from the archive we developed a 3-hour continuous database for 2011 and we used first and second output time steps in the runs launched in every 6 hours, thus every run can provide data for the 3<sup>rd</sup> and 6<sup>th</sup> hour after the launch.

Quality of analysis prepared for 0 hour and generated directly from the data assimilation and the maximum 6-hour short term forecasts showed no significant difference. However, using short term forecasts may have several benefits versus analysis: firstly they allow the development of 3-hour data series versus the 6-hour cycle of data collection. Secondly surface data that are not shown in the critical, measurements for propagation modelling can be directly derived from the enhanced parametrics of the forward looking model, e.g. boundary layer height. Moreover, in case of

any eventual data shortage the missing data can be replaced with subsequent forecasting steps of the previous model run, thus we can secure the data series continuity.

We used meteorological data of 2011 for the simulation. This selection was primarily based on the fact that during 2011 there were several weather conditions unfavourable for air pollution aspects. 2011 had an extremely dry summer with 1–3-week heat waves that are favourable for enriching the air pollutants. There was a long cold cushion situation prevailing in the country between mid-November and early December in 2011, when serious smog situations emerged at several points in the country. Based on the above procession of the total time series of 2011 can provide information regarding the load evolving in the most unfavourable climatic conditions.

Data of this year when the weather was very unfavourable for air quality aspects present conservative estimate regarding meteorological conditions that have impacts onto air pollution in Hungary.

# **16.4** IMPACTS OF EMITTED NON-RADIOACTIVE AIR POLLUTANTS ONTO AMBIENT AIR QUALITY DURING PAKS II CONSTRUCTION

We calculated the limits required for the survey in accordance with Appendix 1 of Decree 4/2011. (I.14.) VM on air load limits and emission limits for stationary air polluting point sources:

| Air pollutant                                   | Limit (µg/m³) | Reference period |
|-------------------------------------------------|---------------|------------------|
| Nitrogen dioxide (NO <sub>2</sub> )             | 100           | hourly average   |
| Carbon monoxide (CO)                            | 10 000        | hourly average   |
| Particulate matter (PM <sub>10</sub> )          | 50            | 24-hour average  |
| Hydrocarbons (C <sub>x</sub> H <sub>y</sub> ) * | 10            | 24-hour average  |

<sup>\*</sup> the limit refers to benzene, hourly limit is not defined

Parameters estimates could be only partially matched using a conservative approach for the sake of security:

- We assumed the total quantity of nitrogen oxides (NO<sub>x</sub>) as NO<sub>2</sub>, and the real NO<sub>2</sub>-quantity subject to the relevant atmospheric parameters could be significantly less than this quantity.
- We assumed the total quantity of hydrocarbons (C<sub>x</sub>H<sub>y</sub>) as benzene. The real quantity of benzene could be significantly less than this quantity.

# 16.4.1 LEGAL BASIS FOR THE IMPACT ZONE DETERMINATION

We determined the impact zone of the studied air pollution in accordance with Article 2. § 14. of the Government Decree 306/2010. Accordingly, the impact zone of the stationary point source:

Around the studies point sources we can delineate the largest area, where the air pollutants emitted by this point source at maximum capacity utilisation the change in the ground-level air load calculated for the reference period and expected below the axis of the torch due to propagation and under the most frequent meteorological conditions emerging in the vicinity of the air polluting point source

- is higher than 10% of the air pollution limit defined for one hour (in case of PM<sub>10</sub> it is 24-hour), or
- the loadability is higher than 20%.

Loadability is the difference between air pollution limit and baseline air load. Baseline air load estimates used the average values of immission measurements performed at the six measuring stations established around Paks II. area.

Table 16.3.3-1: Limit of the studied air polluting materials

| Air pollutant                                 | Baseline load of the air<br>based on 2012 tests | Loadability          | Limit 10%-a | Loadability 20%-a |
|-----------------------------------------------|-------------------------------------------------|----------------------|-------------|-------------------|
|                                               |                                                 | (µg/m <sup>3</sup> ) |             |                   |
| Carbon monoxide (CO)                          | 525                                             | 9 475                | 1 000       | 1 895             |
| Nitrogen oxides (NO <sub>x</sub> )            | 30                                              | 70                   | 10          | 14                |
| Hydrocarbons (C <sub>x</sub> H <sub>y</sub> ) | n.a.                                            | n.a.                 | 1           | n.a.              |
| Particulate matter (PM <sub>10</sub> )        | 27                                              | 23                   | 5           | 4,6               |

Table 16.4.1-1: Data on the studied air polluting materials

When we determined the impact zone we used the stricter among the two criteria defined in the Government Decree, and these values were 10% of baseline pollution of carbon monoxide, nitrogen oxides and hydrocarbons, and 20% of the loadability limit in case of particulate matter.

Figure 16.4.1-1 presents a specific example for data used for air pollution, and these data were applied for both direct and indirect sources.



határérték feletti koncentráció - concentration higher than limit, határérték - limit, terhelhetőség - loadability, alap terhelhetőség - base loadability terhelhetőség 20%-a - 20% of loadability, határéték 10%-a - 10% of limit, határérték túllépés - excessing limit, hatásterület - impact zone NO<sub>2</sub> koncentráció – NO<sub>2</sub> concentration

Figure 16.4.1-1: Definition of value higher than the limit and the impact zone

We present the concentration values received for the given material as average calculated for the limit of the relevant reference time. The concentration values defined for hourly period refer to part of the day with maximum emission rate.

We calculated the expected atmospheric concentration distributions and impact zones using the real meteorological database and conservative meteorological data.

- using real meteorological database (for 2011 with hourly resolution), simulating average concentration fields,
- assuming conservative meteorological conditions, simulating the theoretically possible most unfavourable conditions.

# 16.4.2 IMPACT FACTORS OF PAKS II IMPLEMENTATION

#### Mobilisation area

Removal / relocation of vegetation from the mobilisation area Topsoil removal and deposition

#### Plant area

Demolishing facilities located on the Plant operation area Removal / relocation of vegetation form the area of implementation, topsoil removal and deposition Establishment of foundations, including work ditches / trenches and eater separation Construction and technological assembly of buildings, structures and engineering objects on water

Route of the 400 kV block transmission line and 120 kV transmission line up to the new sub-station

Landscaping on areas of transmission line poles Topsoil removal and deposition Foundation of transmission line poles Pole assembly – erection Pulling and assembly of transmission line

Transportation

Construction materials transportation into the plant Human resource transportation into the plant

# 16.4.2.1 Air polluting sources and characteristics of Paks II implementation

#### 16.4.2.1.1 Air polluting sources and characteristics of Paks II implementation



bontás - demolishing, tereprendezés - terrain arrangement, alapozás – foundation szerekezetépítés - structure construction, szerekzetépítés (cask zajforrás) - structure construction (only noise source)

Figure 16.4.2-1: Air polluting sources during implementation phase - overview site plan



bontás - demolishing, tereprendezés - terrain arrangement, alapozás – foundation szerekezetépítés - structure construction, szerekzetépítés (cask zajforrás) - structure construction (only noise source)

|         | 10 1 0 0. 1:4  | mall, the a |         | al              |                   |        | 4h-      | mlant area |
|---------|----------------|-------------|---------|-----------------|-------------------|--------|----------|------------|
| FIGUIRE | In 4 7-7 AIr   | $n_{0}$     | SOUTCAS | 111111111111111 | nniemeniaiion     | nnase  | on me    | niani area |
| iguio   | 10. I.L L. I W | ponuting    | 0001000 | uunng n         | inprovincenceuori | pridoo | 011 1110 | plant alou |

### Dusting source during the implementation phase

| Description                                                                            | Area           | topsoil /humus | Quantity of removed<br>/ moved soil |
|----------------------------------------------------------------------------------------|----------------|----------------|-------------------------------------|
|                                                                                        | m <sup>2</sup> | m              | m <sup>3</sup>                      |
| Removal and deposition of topsoil                                                      |                |                |                                     |
| On operation area                                                                      | 270 330        | 0,2 m topsoil  | 54 066                              |
| On mobilisation area                                                                   | 300 000        | 0,2 m topsoil  | 60 000                              |
| On the island                                                                          | 22 521         | 0,2 m topsoil  | 4 504                               |
| On areas of block transmission line and transmission line poles                        | 4 031          | 0,2 m topsoil  | 806                                 |
| Foundation                                                                             |                |                |                                     |
| Quantity of moved soil (calculating with average depth of certain building foundation) |                |                | 821 260                             |

Table 16.4.2-1: Air polluting sources and their characteristics during the construction phase on the construction area

|        | Description                                            | Motor fuel consumption | Operation<br>time | Consume         | ed gasoil | Emission/unit |                 |                               | Total emission<br>(1 vehicle) |          |                               | Pieces                       | Total emission |       | ı                             |
|--------|--------------------------------------------------------|------------------------|-------------------|-----------------|-----------|---------------|-----------------|-------------------------------|-------------------------------|----------|-------------------------------|------------------------------|----------------|-------|-------------------------------|
|        |                                                        | [litre/h]              | [h/day]           | [litre/<br>day] | [kg/day]  |               | [kg/kg]         |                               |                               | [kg/day] |                               | pcs                          | [kg/day]       |       |                               |
|        |                                                        |                        |                   |                 |           | CO            | NO <sub>x</sub> | C <sub>x</sub> H <sub>y</sub> | CO                            | NOx      | C <sub>x</sub> H <sub>y</sub> |                              | CO             | NOx   | C <sub>x</sub> H <sub>y</sub> |
| bu     | Heavy-duty machines (rotating excavator, dumpers)      | 20                     | 24                | 480             | 398,4     | 0,28          | 0,04            | 0,01                          | 111,6                         | 15,9     | 4,0                           | 2,0                          | 223,1          | 31,9  | 8,0                           |
| olishi | Dredger equipped with hydraulic crushing head          | 30                     | 24                | 720             | 597,6     | 0,28          | 0,04            | 0,01                          | 167,3                         | 23,9     | 6,0                           | 3,0                          | 502,0          | 71,7  | 17,9                          |
| Dem    | Crusher (with jaws or centrifuge crusher)              | 30                     | 24                | 720             | 597,6     | 0,28          | 0,04            | 0,01                          | 167,3                         | 23,9     | 6,0                           | 1,0                          | 167,3          | 23,9  | 6,0                           |
| Т      | Heavy-duty machines (rotating excavator, dumper, etc.) | 20                     | 24                | 480             | 398,4     | 0,28          | 0,04            | 0,01                          | 111,6                         | 15,9     | 4,0                           | 20+8<br>(mobilis<br>. area.) | 3123,5         | 446,2 | 111,6                         |
| _      | Heavy-duty machines (dumper truck, etc.)               | 20                     | 24                | 480             | 398,4     | 0,28          | 0,04            | 0,01                          | 111,6                         | 15,9     | 4,0                           | 12,0                         | 1338,6         | 191,2 | 47,8                          |
| latior | Concrete mixer                                         | 30                     | 24                | 720             | 597,6     | 0,28          | 0,04            | 0,01                          | 167,3                         | 23,9     | 6,0                           | 2,0                          | 334,7          | 47,8  | 12,0                          |
| ounc   | Pump                                                   | 2                      | 24                | 48              | 39,8      | 0,28          | 0,04            | 0,01                          | 11,2                          | 1,6      | 0,4                           | 1,0                          | 11,2           | 1,6   | 0,4                           |
| ЪЧ     | Mobile crane                                           | 20                     | 24                | 480             | 398,4     | 0,28          | 0,04            | 0,01                          | 111,6                         | 15,9     | 4,0                           | 1,0                          | 111,6          | 15,9  | 4,0                           |
|        | Heavy-duty machines (rotating excavator, dumper, etc.) | 20                     | 24                | 480             | 398,4     | 0,28          | 0,04            | 0,01                          | 111,6                         | 15,9     | 4,0                           | 24,0                         | 2677,2         | 382,5 | 95,6                          |
|        | Electric tower crane                                   | -                      | 24                | -               | -         |               |                 |                               |                               |          |                               | 10,0                         |                |       |                               |
|        | Diesel tower crane                                     | 40                     | 24                | 960             | 796,8     | 0,28          | 0,04            | 0,01                          | 223,1                         | 31,9     | 8,0                           | 2,0                          | 446,2          | 63,7  | 15,9                          |
| /ork   | Mobile crane                                           | 20                     | 24                | 480             | 398,4     | 0,28          | 0,04            | 0,01                          | 111,6                         | 15,9     | 4,0                           | 1,0                          | 111,6          | 15,9  | 4,0                           |
| v ylc  | Dredger ship                                           | 40                     | 24                | 960             | 796,8     | 0,28          | 0,04            | 0,01                          | 223,1                         | 31,9     | 8,0                           | 1,0                          | 223,1          | 31,9  | 8,0                           |
| emt    | Gap masonry machine                                    | 30                     | 24                | 720             | 597,6     | 0,28          | 0,04            | 0,01                          | 167,3                         | 23,9     | 6,0                           | 1,0                          | 167,3          | 23,9  | 6,0                           |
| Ass    | Concrete mixer                                         | 30                     | 24                | 720             | 597,6     | 0,28          | 0,04            | 0,01                          | 167,3                         | 23,9     | 6,0                           | 2,0                          | 334,7          | 47,8  | 12,0                          |
|        | Platform vibrator                                      | 5                      | 24                | 120             | 99,6      | 0,28          | 0,04            | 0,01                          | 27,9                          | 4,0      | 1,0                           | 2,0                          | 55,8           | 8,0   | 2,0                           |
|        | Rod vibrator                                           | -                      | 24                | -               | -         |               |                 |                               |                               |          |                               | 2,0                          |                |       |                               |
|        | Crane truck                                            | 30                     | 24                | 720             | 597,6     | 0,28          | 0,04            | 0,01                          | 167,3                         | 23,9     | 6,0                           | 1,0                          | 167,3          | 23,9  | 6,0                           |

Comment:

Gasoil density [kg/dm3] (MSZ EN ISO 3675) 0,83

T – landscaping

Table 16.4.2-2: Characteristics of air polluting sources during plant construction

### 16.4.2.1.2 Air polluting sources and their characteristics along 400 kV block transmission line and 120 kV transmission line up to the new sub-station

Landscaping on area for transmission line poles Topsoil removal and deposition, foundation of transmission line poles Pole assembly and erection, transmission line pulling and assembly

The construction leadtime will be nearly 8-10 months, but works may take even longer than 1 year. Though the construction phase is broken down to several phases, we apply the limits onto the total construction process. During the construction process heavy-duty earth machines, heavy-duty construction machines and transportation vehicles will be the predominant sources for air polluting materials. Construction operations will be performed daytime. Based on experiences acquired on construction works similar to the planned project we use data presented in the following table for calculating the air polluting impacts of the construction:

|             | Description                                                                                                                                                             | Motor fuel<br>consumption | Operatio<br>n time | Consume         | ed gasoil    | Specific emissions |         | Total emission<br>(1 vehicle) |          |      | Pieces                        | Total emission |          | n    |                               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|-----------------|--------------|--------------------|---------|-------------------------------|----------|------|-------------------------------|----------------|----------|------|-------------------------------|
|             |                                                                                                                                                                         | [litre/h]                 | [h/day]            | [litre/<br>day] | [kg/<br>day] |                    | [kg/kg] |                               | [kg/day] |      |                               | pcs            | [kg/day] |      |                               |
|             |                                                                                                                                                                         |                           |                    |                 |              | CO                 | NOx     | C <sub>x</sub> H <sub>y</sub> | CO       | NOx  | C <sub>x</sub> H <sub>y</sub> |                | СО       | NOx  | C <sub>x</sub> H <sub>y</sub> |
| Landscaping | Heavy-duty machines (truck, bulldozer)                                                                                                                                  | 20                        | 16                 | 200             | 166          | 0,28               | 0,04    | 0,01                          | 74,<br>4 | 10,6 | 2,7                           | 2              | 148,7    | 21,2 | 5,3                           |
| Foundation  | Heavy-duty machines (hydraulic<br>dredger with deep digging unit,<br>bulldozer and excavator, piling<br>machine with internal combus-<br>tion engine or comprised air ) | 20                        | 16                 | 200             | 166          | 0,28               | 0,04    | 0,01                          | 74,<br>4 | 10,6 | 2,7                           | 6              | 446,2    | 63,7 | 15,9                          |
| Assembly    | Heavy-duty machines (truck,<br>jeep, agricultural heavy-duty<br>machine, transmission line<br>pulling machine line )                                                    | 20                        | 16                 | 200             | 166          | 0,28               | 0,04    | 0,01                          | 74,<br>4 | 10,6 | 2,7                           | 9              | 669,3    | 95,6 | 23,9                          |

Comment:

Gasoil density [kg/dm3] (MSZ EN ISO 3675) 0,83

Table 16.4.2-3: Characteristics of pollution sosurces of block transmission lines and a transmission line construction

# 16.4.2.1.3 Transportation

Transportation operations will be carried out on road, railway and water (barges). Road transportation will be operated daytime. This operation will also cause higher traffic of passenger transporting vehicles.

Alternatives of road traffic with identical level of probability:

- *M6 motorway towards north and south,*
- Main road no. 6 towards north and south.

| Description                              | Motor fuel consumption | Motor<br>capacity   | Duration of stay   | Motor energy<br>need | Spee | Specific emission<br>(EURO 5)  |                               |                         | Emission<br>(1 vehicle | )<br>)                        | Pieces  | То   | Total emission  |                               |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |  |          |  |         |  |          |  |
|------------------------------------------|------------------------|---------------------|--------------------|----------------------|------|--------------------------------|-------------------------------|-------------------------|------------------------|-------------------------------|---------|------|-----------------|-------------------------------|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--|----------|--|---------|--|----------|--|
|                                          | [litre/100 km]         | [kW]                | [h/day]            | [kWh]                |      | [g/kWh]                        |                               | [kg/day]                |                        |                               | pcs/day |      | [kg/day]        |                               |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |  |          |  |         |  |          |  |
|                                          | ļ ,                    |                     |                    |                      | CO   | NO <sub>x</sub>                | C <sub>x</sub> H <sub>y</sub> | CO                      | NO <sub>x</sub>        | C <sub>x</sub> H <sub>y</sub> |         | CO   | NO <sub>x</sub> | C <sub>x</sub> H <sub>y</sub> |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |  |          |  |         |  |          |  |
| Truck (3-4 axle dumper truck, etc.)      | 17                     | 200                 | 2                  | 400                  | 1,5  | 2                              | 0,46                          | 0,6                     | 0,8                    | 0,184                         | 130     | 78   | 104             | 23,92                         |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |  |          |  |         |  |          |  |
| Passenger transportation (bus, mini bus) | 17                     | 200                 | 2                  | 400                  | 1,5  | 2                              | 0,46                          | 0,6                     | 0,8                    | 0,184                         | 84      | 50,4 | 67,2            | 15,456                        |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |  |          |  |         |  |          |  |
|                                          | Motor fuel consumption | Distance<br>covered | Consumed<br>gasoil | Consumed<br>gasoil   | Spec | Specific emissions<br>(EURO 5) |                               | Emission<br>(1 vehicle) |                        | )                             | Pieces  | То   | tal emiss       | sion                          |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |  |          |  |         |  |          |  |
|                                          | [litre/100 km]         | [km]                | [litre/day]        | [kg/day]             |      | [g/km]                         |                               |                         | [g/km]                 |                               | [g/km]  |      | [g/km]          |                               | [g/km] |  | [g/km] |  | [g/km] |  | [g/km] |  | [g/km] |  | [g/km] |  | [g/km] |  | [g/km] |  | [g/km] |  | [g/km] |  | [g/km] |  |  | [kg/day] |  | pcs/day |  | [kg/day] |  |
|                                          | ,<br>                  |                     |                    |                      | CO   | NO <sub>x</sub>                | C <sub>x</sub> H <sub>y</sub> | CO                      | NOx                    | C <sub>x</sub> H <sub>y</sub> |         | CO   | NOx             | C <sub>x</sub> H <sub>y</sub> |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |  |          |  |         |  |          |  |
| Passenger car                            | 8                      | 100                 | 8                  | 6,64                 | 0,5  | 0,18                           | 0,05                          | 0,05                    | 0,018                  | 0,005                         | 350     | 17,5 | 6,3             | 1,75                          |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |  |          |  |         |  |          |  |

Table 16.4.2-4: Air polluting sources and their characteristics of transportaion during the construction phase

# 16.4.3 IMPACTS AND IMPACT ZONES OF CONSTRUCTION

Emission of non-radioactive polluting material related to the implementation of Paks II can be connected to the construction works and the related traffic emissions.

# 16.4.3.1 Construction works impacts

We calculated the propagation for the following four periods of the implementation process:

- demolishing,
- landscaping,
- foundation,
- structure construction.

Emission data for stationary sources (point, and local sources in the area) related to construction works and for various periods were available. We prepared the propagation simulations for air polluting materials where we had the relevant emission data, like carbon monoxide (CO), nitrogen oxides (NO<sub>x</sub>) and hydrocarbons ( $C_xH_y$ ).

During the impacts survey we used data presented in Table 16.4.2-1- Table 16.4.2-3.

During landscaping when the cultivated soil / topsoil is removed, we estimated the dust quantity emitted into the atmosphere as 0,029 kg/ton in line with the reference given in the relevant professional literature [16-11]. based also on references form professional literature [16-11]; [16-12] we defined the  $PM_{10}$  content of dust quantity emitted into the atmosphere as 7 g / m<sup>3</sup>, as a fairly conservative estimate. This value means that if we move 1 m<sup>3</sup> soil, then this  $PM_{10}$  quantity would be emitted into the atmosphere (in case of wet soil the quality would be lower) under this pessimistic estimate. We calculated the volume and quantity of the moved soil using the available data (i.e. size of the working area and depth of the removed soil – and the moved soil quantity moved during landscaping was taken as 119 376 m<sup>3</sup>, and during foundation it was total 821 260 m<sup>3</sup>). The assumed duration of the emission was takes as 3 months. We selected high number of points in the source area and allocated the total emitted quantity onto each point for the relevant emission period. Thus and based on the locations of the source points we could estimate also the quantity and impact zone of particulate matter ( $PM_{10}$ ) emitted into the atmosphere due to dusting

# 16.4.3.1.1 Demolishing period

Regarding the demolishing period we calculated the concentration fields and impact zones of polluting materials based on emission data defined in Table 16.4.2-2.

|                             | CO                   | NOx                                         | C <sub>x</sub> H <sub>y</sub>               |  |  |  |  |
|-----------------------------|----------------------|---------------------------------------------|---------------------------------------------|--|--|--|--|
|                             | µg/m³                |                                             |                                             |  |  |  |  |
| max. concentration          | 1 450                | 117                                         | 29                                          |  |  |  |  |
| Value exceeding limit       | none                 | on operation area                           | on operation area                           |  |  |  |  |
| limit 10%-a                 | 1 000                | 10                                          | 1                                           |  |  |  |  |
| impact zone (if applicable) | yes                  | yes                                         | yes                                         |  |  |  |  |
| impact zone                 | on operation<br>area | within 500 m radius from the operation area | within 500 m radius from the operation area |  |  |  |  |

Table 16.4.3-1: Maximum concentration and impact zones calculated for the demolishing phase

The following figures present the immission values concentration for each pollutant calculated with real meteorological data and the borderlines of the impact zone marked with red contour lines, for the nitrogen oxides (NO<sub>x</sub>) in Figure 16.4.3-2, and for carbon-monoxide (CO) in Figure 16.4.3-1, and for hydrocarbons ( $C_xH_y$ ) in Figure 16.4.3-3.



# CO koncentráció: bontás







NOx koncentráció: bontás - NOx concentration during the demolishing period

Figure 16.4.3-2: NO<sub>x</sub> impact zone during the demolishing period



# CxHy koncentráció: bontás

CxHy koncentráció: bontás - CxHy concentration during the demolishing period

Figure 16.4.3-3:  $C_x H_v$  impact zone during the demolishing period

We can make the following conclusions on non-radioactive air polluting impacts emitted during the demolishing works and the relevant impact zones:

• Carbon-monoxide (CO):

Calculating with real meteorological conditions, no value was higher than the limit, and the impact zone is located within the operation area.

Calculating with conservative meteorological conditions, value higher than the limit can emerge only in the direct vicinity of source points, and the impact zone is located within the operation area.

 Nitrogen oxides (NO<sub>x</sub>): Calculating with real meteorological conditions, NO<sub>x</sub> value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation area. Calculating with conservative meteorological conditions value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation area.

- Hydrocarbons (C<sub>x</sub>H<sub>y</sub>): Calculating with real meteorological conditions, C<sub>x</sub>H<sub>y</sub> value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation area.
- Calculating with conservative meteorological conditions, value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation area.

# 16.4.3.1.2 Landscaping period

Regarding the landscaping period, we calculated the concentration fields and impact zones of polluting materials based on emission data defined for earthworks in Table 16.4.2-1 and in Table 16.4.2-2.

|                             | CO                                               | NOx                                                                | C <sub>x</sub> H <sub>y</sub>                                         | <b>PM</b> 10                                     |
|-----------------------------|--------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|
|                             |                                                  | µg/m³                                                              |                                                                       |                                                  |
| max.<br>concentration       | 1 840                                            | 263                                                                | 66                                                                    | 11                                               |
| Value exceeding the limit   | none                                             | within the operation and mobilisation area                         | within the operation and mobilisation area                            | none                                             |
| limit 10%-a                 | 1 000                                            | 10                                                                 | 1                                                                     | 4,6                                              |
| impact zone (if applicable) | yes                                              | yes                                                                | yes                                                                   | yes                                              |
| impact zone                 | within the<br>operation and<br>mobilisation area | within 500 m radius<br>from the operation<br>and mobilisation area | within 1000 m radius<br>from the operation and<br>mobilisation area l | within the<br>operation and<br>mobilisation area |

Table 16.4.3-2: Maximum concentrations and impact zones calculated for the landscaping period

The following figures present the impact zones, carbon monoxide (CO) - Figure 16.4.3-4, nitrogen oxides (NO<sub>x</sub>) - Figure 16.4.3-5, hydrocarbons ( $C_xH_y$ ) - Figure 16.4.3-6, particulate matter (PM<sub>10</sub>) - Figure 16.4.3-7

# CO koncentráció: tereprendezés



CO koncentráció: tereprendezés - CO concentration during the landscaping period Figure 16.4.3-4: CO impact zone during the landscaping period



# NOx koncentráció: tereprendezés

 $NO_{x}$  koncentráció: tereprendezés -  $NO_{x}$  concentration during the landscaping period

Figure 16.4.3-5:  $NO_x$  impact zone during the landscaping period



# CxHy koncentráció: tereprendezés

CxHy koncentráció: tereprendezés - CxHy concentration during the landscaping period Figure 16.4.3-6:  $C_xH_y$  impact zone during the landscaping period



# PM10 koncentráció: talajletermelés

PM10 koncentráció: talajtermelés - PM10 concentration during the soil removal

We can make the following conclusions on radioactive emissions impacts and impact zones related to landscaping works

• Carbon monoxide (CO):

Calculating with real meteorological conditions, there was no CO value higher than the limit, and the impact zone is located within the operation and mobilisation areas.

Calculating with conservative meteorological conditions value higher than the limit occurred only in the direct vicinity of the source points, and the impact zone is located within the operation and mobilisation areas

• Nitrogen oxides (NO<sub>x</sub>):

Calculating with real meteorological conditions, NO<sub>x</sub> value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation area.

Calculating with conservative meteorological conditions value higher than the limit can emerge within the operation and mobilisation areas, and the impact zone is located within 500 m radius of the operation and mobilisation areas

Hydrocarbons (C<sub>x</sub>H<sub>y</sub>):

Calculating with real meteorological conditions,  $C_xH_y$  value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation and mobilisation area.

Calculating with conservative meteorological conditions, value higher than the limit can emerge only within and mobilisation areas, and the impact zone is located within 1000 m radius of the operation and mobilisation area.

 Particulate matter (PM<sub>10</sub>): Calculating with real meteorological conditions, there was no PM<sub>10</sub>value higher than the limit, and the impact zone is located within the operation and mobilisation areas. Calculating with conservative meteorological conditions, value higher than the limit can emerge only in the

direct vicinity of source points, and the impact zone is located within the operation and mobilisation areas.

We prepared the calculations also for the earthworks related to the block and transmission lines using data from Table 16.4.2-1, and emission data in Table 16.4.2-4. As the results can demonstrate, there no impact zone could be identified.

Figure 16.4.3-7: PM<sub>10</sub> impact zone during the soil removal

# 16.4.3.1.3 Foundation period

Regarding the foundation period, we calculated the concentration fields and impact zones of polluting materials based on emission data defined for earthworks in Table 16.4.2-1 and Table 16.4.2-2.

|                                | CO                                       | NOx                                        | C <sub>x</sub> H <sub>y</sub>              | <b>PM</b> 10                               |  |  |  |  |  |
|--------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--|--|--|--|--|
|                                |                                          | µg/m³                                      |                                            |                                            |  |  |  |  |  |
| max. concentration             | 1 562                                    | 223                                        | 56                                         | 190                                        |  |  |  |  |  |
| Value exceeding limit          | e exceeding limit none on operation area |                                            | on operation area                          | on operation area                          |  |  |  |  |  |
| Limit 10%-a                    | 1 000                                    | 10                                         | 1                                          | 4,6                                        |  |  |  |  |  |
| Impact zone (if<br>applicable) | yes                                      | yes                                        | yes                                        | yes                                        |  |  |  |  |  |
| impact zone                    | on operation<br>area                     | within 1000 m radius<br>from operation are | within 1000 m radius<br>from operation are | within 1000 m radius<br>from operation are |  |  |  |  |  |

Table 16.4.3-3: Maximum concentration and impact zones calculated for foundations

The following figures present the impact zones for carbon monoxide (CO) - Figure 16.4.3-8, nitrogen oxides (NO<sub>x</sub>) - Figure 16.4.3-9, hydrocarbons ( $C_xH_y$ ) - Figure 16.4.3-10, particulate matter (PM<sub>10</sub>) - Figure 16.4.3-11.



# CO koncentráció: alapozás

CO koncentráció: alapozás - CO concentration during the foundation period Figure 16.4.3-8: CO impact zone during the foundation period





 $NO_{x}$  koncentráció: alapozás -  $NO_{x}$  concentration during the foundation period

Figure 16.4.3-9:  $NO_x$  impact zone during the foundation period



CxHy koncentráció: alapozás

CxHy koncentráció: alapozás - CxHy concentration during the foundation period Figure 16.4.3-10:  $C_xH_y$  impact zone during the foundation period



# PM10 koncentráció: alapozás

PM10 koncentráció: alapozás - PM10 concentration during the foundation period

Figure 16.4.3-11: PM<sub>10</sub> impact zone during the foundation period

We can make the following conclusions on radioactive emissions impacts and impact zones related to foundation works:

• Carbon monoxide (CO):

Calculating with real meteorological conditions, there was no CO value higher than the limit, and the impact zone is located within the operation area.

Calculating with conservative meteorological conditions, value higher than the limit can emerge only in the direct vicinity of source points, and the impact zone is located within the operation area.

• Nitrogen oxides (NO<sub>x</sub>):

Calculating with real meteorological conditions, NO<sub>x</sub> value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation area.

Calculating with conservative meteorological conditions value higher than the limit can emerge only within the operation area, the impact zone is located within 1000 m radius of the operation area.

Hydrocarbons (C<sub>x</sub>H<sub>y</sub>):

Calculating with real meteorological conditions,  $C_xH_y$  value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation area.

Calculating with conservative meteorological conditions value higher than the limit can emerge only within the operation area, the impact zone is located within 1000 m radius of the operation area

• Particulate matter (PM<sub>10</sub>):

Calculating with real meteorological conditions, PM<sub>10</sub> value higher than the limit can emerge only within the operation area, the impact zone is located within 500 m radius of the operation area.

Calculating with conservative meteorological conditions value higher than the limit can emerge only within the operation area, the impact zone is located within 1000 m radius of the operation area.

We prepared the calculations also for the earthworks related to the block and transmission lines using data from Table 16.4.2-1, and emission data in Table 16.4.2-4. As the results can demonstrate, there no impact zone could be identified.

# 16.4.3.1.1 Structure construction period

Regarding the structure construction period, we calculated the concentration fields and impact zones of polluting materials based on emission data defined in Table 16.4.2-2.

|                             | CO                                                          | NOx                                                         | C <sub>x</sub> H <sub>y</sub>                               |  |  |  |  |
|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|
|                             |                                                             | μg/m³                                                       |                                                             |  |  |  |  |
| max. concentration          | 2 570                                                       | 367                                                         | 92                                                          |  |  |  |  |
| Value exceeding limit       | none                                                        | within the operation<br>and mobilisation area<br>and island | within the operation and<br>mobilisation area and<br>island |  |  |  |  |
| limit 10%-a                 | 1 000                                                       | 10                                                          | 1                                                           |  |  |  |  |
| impact zone (if applicable) | yes                                                         | yes                                                         | yes                                                         |  |  |  |  |
| impact zone                 | within the operation and<br>mobilisation area and<br>island | within 1000 m radius from the emission                      | within 1000 m radius from the emission                      |  |  |  |  |

Table 16.4.3-4: Maximum concentration and a impact zones calculated for the structure construction period

The following figures present the impact zones for carbon monoxide (CO) - Figure 16.4.3-12, nitrogen oxides (NO<sub>x</sub>) - Figure 16.4.3-13, hydrocarbons ( $C_xH_y$ ) - Figure 16.4.3-14.



# CO koncentráció: szerkezetépítés

CO koncentráció: szerekzetépítés - CO concentration during the construction period Figure 16.4.3-12: CO impact zone during the structure construction period



# NOx koncentráció: szerkezetépítés



# 2 6 10 mikrogramm m-3

CxHy koncentráció: szerkezetépítés

CxHy koncentráció: szerekzetépítés - CxHy concentration during the construction period Figure 16.4.3-14: CxHy impact zone during the structure construction period We can make the following conclusions on radioactive emissions impacts and impact zones related to structure construction works:

• Carbon-monoxide (CO):

Calculating with real meteorological conditions, there was no CO value higher than the limit, and the impact zone is located within the operation and mobilisation areas and on the island.

Calculating with conservative meteorological conditions, value higher than the limit can emerge only in direct vicinity of source points, but the impact zone is located within the operation/mobilisation area and the island.

• Nitrogen oxides (NO<sub>x</sub>):

Calculating with real meteorological conditions,  $NO_x$  value higher than the limit can emerge only within the operation and mobilisation areas and within the island, and the impact zone within 1000 m radius of the emission.

Calculating with conservative meteorological conditions, value higher than the limit can emerge only within the operation area, the impact zone is located within 1000 m radius of the source points

• Hydrocarbons (C<sub>x</sub>H<sub>y</sub>):

Calculating with real meteorological conditions,  $C_xH_y$  value higher than the limit can emerge only within the operation and mobilisation area and within the island, and the impact zone is located within 500 m radius of the emissions.

Calculating with conservative meteorological conditions value higher than the limit can emerge only within the operation area, the impact zone is located within 1000 m radius of the operation area.

We wish to note that during the above calculations we estimated the impacts for  $NO_x$  and  $C_xH_y$  using a conservative approach, thus the expected actual impacts are restricted to a smaller area. However, assuming the long term existence of the most unfavourable meteorological conditions for the eventual dilution of the atmospheric polluting materials values higher than the limit may emerge also in larger area, and thus the impact zone may extend the boundaries of the operation area. If we can predict that unfavourable weather conditions remain in place for a longer period of time the works can be suspended and as a result higher concentration values and evolution of larger impact zones may be prevented.

# 16.4.3.1.2 Summary: impacts during the implementation phase

# Under real meteorological conditions

|                                                                                  | СО                                                    | NO <sub>x</sub>                                       | C <sub>x</sub> H <sub>y</sub>                         | <b>PM</b> <sub>10</sub>                        |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|--|
|                                                                                  | •                                                     | Demolishing                                           |                                                       |                                                |  |
| max. conc. (µg/m <sup>3</sup> ):                                                 | 1 450                                                 | 117                                                   | 29                                                    |                                                |  |
| value exceeding limit:                                                           | none                                                  | on the operation area                                 | on the operation area                                 | -                                              |  |
| impact zone:                                                                     | on the operation area                                 | within 500 m radius from the<br>operation area        | within 500 m radius from the<br>operation area        | -                                              |  |
|                                                                                  |                                                       | Landscaping                                           |                                                       |                                                |  |
| max. conc. (µg/m <sup>3</sup> ):                                                 | 1 840                                                 | 263                                                   | 66                                                    | 11                                             |  |
| Value exceeding limit:                                                           | none                                                  | within the operation and mobilisation area            | none                                                  |                                                |  |
| impact zone:                                                                     | within the operation and<br>mobilisation area         | within 500 m radius from operation/mobilisation area  | within 500 m radius from operation/mobilisation area  | within the operation and mobilisation area     |  |
|                                                                                  |                                                       | Foundation                                            |                                                       |                                                |  |
| max. conc. (µg/m <sup>3</sup> ):                                                 | 1 562                                                 | 223                                                   | 56                                                    | 190                                            |  |
| Value exceeding limit:                                                           | none                                                  | on the operation area                                 | on the operation area                                 | on the operation area                          |  |
| impact zone:                                                                     | on the operation area                                 | within 500 m radius from the<br>operation area        | within 500 m radius from the<br>operation area        | within 500 m radius from the<br>operation area |  |
|                                                                                  |                                                       | Structure construction                                |                                                       |                                                |  |
| max. conc. (µg/m <sup>3</sup> ):                                                 | 2 570                                                 | 367                                                   | 92                                                    |                                                |  |
| Value exceeding limit: none within the operation and mobilisation area and islar |                                                       | within the operation and mobilisation area and island | within the operation and mobilisation area and island | -                                              |  |
| impact zone:                                                                     | within the operation and mobilisation area and island | within 500 m radius from the<br>operation area        | within 500 m radius from the<br>operation area        | -                                              |  |

Table 16.4.3-5: Impacts of Paks II implementation onto the air quality under real meteorological conditions

Under conservative meteorological conditions

|                        | CO                                                                 | NO <sub>x</sub>                                                                                                                           | NO <sub>x</sub> C <sub>x</sub> H <sub>y</sub> |                                          |  |
|------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|--|
|                        |                                                                    | Demolishing                                                                                                                               |                                               | •                                        |  |
| Value exceeding limit: | in direct vicinity of source<br>points                             | on the operation area                                                                                                                     | on the operation area                         | -                                        |  |
| impact zone:           | on the operation area                                              | on the operation area within 500 m from the within 500 m from operation<br>operation area area                                            |                                               | -                                        |  |
|                        |                                                                    | Landscaping                                                                                                                               |                                               |                                          |  |
| Value exceeding limit: | in direct vicinity of source<br>points                             | within operation and<br>mobilisation area                                                                                                 | in direct vicinity of source<br>points        |                                          |  |
| impact zone:           | within operation and<br>mobilisation area                          | within operation and within 500 m from operation within 1000 m from oper<br>mobilisation area and mobilisation area and mobilisation area |                                               |                                          |  |
|                        |                                                                    | Foundation                                                                                                                                |                                               |                                          |  |
| Value exceeding limit: | in direct vicinity of source<br>points                             | within 500 m from the<br>operation area                                                                                                   | within 500 m from the<br>operation area       | within 500 m from the<br>operation area  |  |
| impact zone:           | on the operation area                                              | within 1000 m from the<br>operation area                                                                                                  | within 1000 m from the<br>operation area      | within 1000 m from the<br>operation area |  |
|                        |                                                                    | Structure construction                                                                                                                    |                                               |                                          |  |
| Value exceeding limit: | eding limit: in direct vicinity of source within 500 points source |                                                                                                                                           | within 500 m from the source<br>points        | -                                        |  |
| impact zone:           | within operation, mobilisation area and island                     | within 1000 m from source<br>points                                                                                                       | within 1000 m from the source points          |                                          |  |

Table 16.4.3-6: Impacts of Paks II implementation onto the air quality under conservative meteorological conditions

Under ordinary circumstances the aggregated load values arising from the relevant implementation phases will be presumably classified for the residential areas as *tolerable-neutral*.

# 16.4.3.2 Transportation impacts

Road traffic has alternatives with identical probability: M6 motorway and road no. 6. Traffic data for roads affected by demolishing and construction works are presented in sub-section nr. 15.4.3 of Paks II. KHT Noise and Vibration.

For studying the impacts related to transportation we used emission data shown in Table 16.4.2-4, and we prepared propagation simulations for significant air pollutant materials shown in this table, namely carbon monoxide (CO), a nitrogen oxides (NO<sub>x</sub>) and hydrocarbons ( $C_xH_y$ ).

For calculating the concentration values, the line sources were regarded as the set of point sources recorded next to each other with high-density.

| Implementation                       |                        |                                         |                               |  |  |  |  |
|--------------------------------------|------------------------|-----------------------------------------|-------------------------------|--|--|--|--|
| Transportation                       |                        |                                         |                               |  |  |  |  |
| Under real meteorological conditions |                        |                                         |                               |  |  |  |  |
|                                      | CO                     | NO <sub>x</sub>                         | C <sub>x</sub> H <sub>y</sub> |  |  |  |  |
| max. conc. (µg/m <sup>3</sup> ):     | 27                     | 33,1                                    | 0,63                          |  |  |  |  |
| Value exceeding limit:               | none                   | none                                    | none                          |  |  |  |  |
| impact zone:                         | none                   | within 100 m from transportation routes | none                          |  |  |  |  |
| Under conservative meter             | eorological conditions |                                         |                               |  |  |  |  |
|                                      | CO                     | NO <sub>x</sub>                         | C <sub>x</sub> H <sub>y</sub> |  |  |  |  |
| Value exceeding limit:               | none                   | none                                    | none                          |  |  |  |  |
| impact zone:                         | none                   | within 100 m from transportation routes | none                          |  |  |  |  |

Table 16.4.3-7: Impacts of transportation during Paks II implementation onto air quality under real and conservative meteorological conditions

The load arising from transportation will under ordinary load conditions be qualified as tolerable-neutral on the residential areas.



# NOx koncentráció: létesítés

NO<sub>x</sub> koncentráció: szerekzetépítés - NO<sub>x</sub> concentration during the during the implementation

Figure 16.4.3-15: Average NOx impact zone emerging due to impacts of transportation during the implementation

We can make the following conclusions on non-radioactive emissions impacts and impact zones related to transportation:

• Carbon-monoxide (CO):

Calculating with real meteorological conditions, there was no CO value higher than the limit, and no impact zone can be identified.

Calculating with conservative meteorological conditions, there was no value higher than the limit, and no impact zone can be identified

• Nitrogen oxides (NO<sub>x</sub>):

•

Calculating with real meteorological conditions, there was no NOx value higher than the limit, and the impact zone is located within 100 m radius perpendicular to the routes.

Calculating with conservative meteorological conditions, there was no value higher than the limit, and the impact zone is located within 100 m radius perpendicular to the routes

Hydrocarbons (C<sub>x</sub>H<sub>y</sub>): Calculating with real meteorological conditions, there was no C<sub>x</sub>H<sub>y</sub> value higher than the limit, and no impact zone can be identified.

Calculating with conservative meteorological conditions, there was no value higher than the limit, and no impact zone can be identified.

• Particulate matter (PM<sub>10</sub>):

Soil moved during landscaping and foundation works will be transported (if required) in truck with proper cover as prescribed, thus the dust load will most probably not increase along the transportation routes.

We wish to note here also that we over-estimated the impacts due to  $NO_x$  and  $C_xH_y$  using a conservative approach, thus the impacts expected along the transportation routes will be restricted to a smaller area.

# **16.4.4** TECHNICAL ACTIONS AIMING AT EMISSION MITIGATION

Emission of air polluting material of diffuse origin can be mitigated with the following technical actions:

Solids moved and dusted during landscaping and foundation works will spread in the ambient air; part of them settles down. Soil parameters (structure, humidity) and then prevailing meteorological conditions can significantly influence the degree of this process. Dusting solids may travel on larger distances only in case of strong wind, and if required it is reasonable to suspend works that can cause intensive dust formation. In case of dry periods dust formation can be mitigated with watering.

# 16.4.5 MONITORING SYSTEM

Based on detailed modelling results we can state that impacts of the implementation will cover the site and its direct environment even assuming conservative meteorological conditions.

The nearest residential building at Csámpa is located 1 330 m, in Paks 2 960 m. and in Dunaszentbenedek 2 590 m from Paks II. construction area. With regard to these significant distances there is no need and argument for establishing stations for pollution monitoring at the test points.

However, considering the size and extension of the project and ~10 year of the complex implementation process it is reasonable, for the sake of security, to monitor air pollution on residential areas located nearest to the planned site.

The proposed measurement points are the following:

- 1 point on Paks-Csámpa settlement, at the residential areas located along road no. 6.
- 1 point at the left bank of the River Danube
- ✤ 1 point in Paks city in the vicinity of Kölesdi road.

The proposed air pollution monitoring is the following:

- Continuous test of concentration of nitrogen dioxide (NO<sub>2</sub>), nitrogen oxides (NO<sub>x</sub>), and carbon monoxide (CO) integrated onto one hour average time using an analyser installed into a mobile measuring station.
  Duration of measurements for every measuring point: 14 days, twice in each season, total 8 times per annum (8 x 14 days)
- Particulate matter fraction below 10 μm (PM<sub>10</sub>), total particulate matter (TSPM) pollution test applying 24-hour exposition time and phased active test technique.
  Duration of measurements for every measuring point: 14 days, twice in each season, total 8 times per annum (8 x 14 days).
- Continuous test of concentration of ozone (O<sub>3</sub>) integrated onto one hour average time using an analyser installed into a mobile measuring station.

Duration of measurements for every measuring point: 14 days, twice in each season, total 8 times per annum (8 x 14 days).

- Settling dust pollution test applying passive test technique.
- Duration of measurements for every measuring point: 30 days, once in each season, total 4 times per annum (4 x 30 days).

Parallel with air pollution test we also propose to continuously register the values of meteorological characteristics (temperature, humidity, wind speed, wind direction) integrated for 1 hour interval.

Accredited laboratory may perform the test applying approved instrument types.

It is advisable to launch the tests one year prior to starting the implementation, as thus we can ensure that the baseline pollution of the area is recorded as the reference point. The test program ought to continue throughout the entire implementation phase as thus we can ensure recording and documentation of the actual states.

# **16.5** IMPACTS OF NON- RADIOACTIVE AIR POLLUTANTS EMITTED DURING PAKS II. OPERATION

# 16.5.1 IMPACTS OF PAKS II ORDINARY OPERATION

# 16.5.1.1 Air polluting sources and characteristics of Paks II. ordinary operation

#### Air polluting point sources – Diesel generators

Four diesel generators each with ~7,5 MW<sub> $\circ$ </sub> capacity will provide power supply for every unit for the safety systems during operational disturbances (outage, the delivered combustion heat will be 18,75 MW<sub>th</sub> per unit

Any diesel generator shall be able to secure the required power supply in case of an eventual emergency shutdown.

According to plans, these diesel generators will under ordinary operation circumstances operate only in test or pilot operation mode. Emissions are determined on the basis of the following key conditions:

- As one diesel generator shall secure power supply if the relevant unit is eventually shut down, every diesel generator will individually perform monthly 8-hour as test run one-by-one, thus approaching real operation conditions for diesel generators,
- b) each of the 8 diesel generators will operate 8 hours during one month separately, one-by-one and not simultaneously,
- *c*) each of the 8 diesel generators will operate 12 x 8 hours during one year, separately, one-by-one, thus the annual operation time is 768 hours.

Based on the above, the expected emission of the diesel generators will be as it follows.

|                                                                        | Emission                                                                  |                                                                            | Operation time | Operation time | Height               |
|------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|----------------|----------------------|
| [kg/h]*                                                                | [kg/month]**                                                              | [kg/year]***                                                               | [h/month/unit] | [h/year/unit]  | [m]                  |
| CO: 26,7<br>NO <sub>x</sub> : 3,8<br>C <sub>x</sub> H <sub>y</sub> : 1 | CO: 1709<br>NO <sub>X</sub> : 243,2<br>C <sub>x</sub> H <sub>y</sub> : 64 | CO: 20506<br>NO <sub>x</sub> : 2918<br>C <sub>x</sub> H <sub>y</sub> : 768 | 8              | 8 x 12         | 19<br>19<br>19<br>19 |

Comment:

\* emission of one diesel generator was used for calculating the hourly emission .

\*\* total 8 x 8 = 64 hours operation time

\*\* total 8 x 8 x 12 = 768 hours operation time

Table 16.5.1-1: Point sources and their characteristics during the operation period

#### Technological emission limits of stationary diesel internal combustion engines

Appendix 7 of Decree 4/2011. (I. 14.) VM on air load limits and emission limits for stationary air polluting point sources, process-specific technology emission limits and other requirements 2.8.1, emission limits for stationary diesel internal combustion engines with higher than 5 MW<sub>th</sub> capacity:

|                                                               | Emission limit [mg/m³]<br>(air pollutant concentration) |                                                    |                |  |  |  |  |
|---------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------|--|--|--|--|
| Diesel engines                                                | Carbon<br>monoxide                                      | Nitrogen oxides<br>(expressed in NO <sub>2</sub> ) | Solid material |  |  |  |  |
| In case of capacity higher than 5 $\mathrm{MW}_{\mathrm{th}}$ | 650                                                     | 2 000<br>500*                                      | 130            |  |  |  |  |

Comment:

\* in case of new diesel engines with higher than 5 MWth capacity, the 500 mg/m<sup>3</sup> limit for nitrogen oxides shall not be applied if the engine operates less than annual 500 hours

Table 16.5.1-2: Emission limits for diesel generators

the emission limits apply on dry tail gas with 5 vol% O<sub>2</sub>-content, at 273 K temperature and 101,3 kPa pressure



| EOV coordinates of point sources for the safety (stand-by) diesel genera | tors |
|--------------------------------------------------------------------------|------|
|--------------------------------------------------------------------------|------|

|         | Sr. nr. | Description                | Х       | Y       |
|---------|---------|----------------------------|---------|---------|
| 1. unit | 3       | Diesel generator (2 units) | 634 927 | 137 143 |
|         | 4       | Diesel generator (2 units) | 634 927 | 137 275 |
| 2. unit | 5       | Diesel generator (2 units) | 634 927 | 137 384 |
|         | 6       | Diesel generator (2 units) | 634 927 | 137 511 |

Table 16.5.1-3: EOV coordinates of points sources for the safety (stand-by) diesel generators

# Transportation

Vehicles (except the trucks) move on the road daytime not in a steady distribution rate, as 80% of passenger cars arrive in the morning between 6-7 hours and depart in the afternoon between 14-15 hours.

Vehicles have the following alternative routes with identical probability:

- M6 motorway to north and south,
- road no. 6. to north and south.

| Description                                                | Motor fuel<br>consumption | Motor<br>capacity    | Duration of stay   | Motor energy<br>need | Specific emissions<br>(EURO 5) |                                  | Total emission<br>(1 vehicle) |                               |                 | Pieces                        | Total emission |                |                 |                               |
|------------------------------------------------------------|---------------------------|----------------------|--------------------|----------------------|--------------------------------|----------------------------------|-------------------------------|-------------------------------|-----------------|-------------------------------|----------------|----------------|-----------------|-------------------------------|
|                                                            | [litre/100<br>km]         | [kW]                 | [h/day]            | [kWh]                |                                | [g/kWh]                          |                               | [kg/day]                      |                 | pcs/day                       | [kg/day]       |                |                 |                               |
|                                                            |                           |                      |                    |                      | со                             | NO <sub>x</sub>                  | $C_{\rm x}H_{\rm y}$          | со                            | NO <sub>x</sub> | $C_xH_y$                      |                | со             | NOx             | $C_xH_y$                      |
| Freight transportation<br>(3-4 axle dumper truck,<br>etc.) | 17                        | 200                  | 2                  | 400                  | 1,5                            | 2                                | 0,46                          | 0,6                           | 0,8             | 0,184                         | 5              | 3              | 4               | 0,92                          |
| Passenger transporta-<br>tion (bus, mini bus)              | 17                        | 200                  | 2                  | 400                  | 1,5                            | 2                                | 0,46                          | 0,6                           | 0,8             | 0,184                         | 11             | 6,6            | 8,8             | 2,024                         |
|                                                            | Motor fuel<br>consumption | Kilometre<br>covered | Consumed<br>gasoil | Consumed<br>gasoil   | Spe                            | Specific emissions<br>(EURO 5) [ |                               | Total emission<br>(1 vehicle) |                 | on                            | Pieces         | Total emission |                 | on                            |
|                                                            | [litre/100<br>km]         | [km]                 | [litre/day]        | [kg/day]             | [g/km]                         |                                  | [g/km] [kg/day]               |                               | pcs/day         |                               | kg/day]        |                |                 |                               |
|                                                            |                           |                      |                    |                      | со                             | NO <sub>x</sub>                  | C <sub>x</sub> H <sub>y</sub> | со                            | NOx             | C <sub>x</sub> H <sub>y</sub> |                | со             | NO <sub>x</sub> | C <sub>x</sub> H <sub>y</sub> |
| Passenger car                                              | 8                         | 100                  | 8                  | 6,64                 | 0,5                            | 0,18                             | 0,05                          | 0,05                          | 0,018           | 0,005                         | 45             | 2,25           | 0,81            | 0,225                         |

Table 16.5.1-4: Air polluting sources and their characteristics during the operation period – transportation

# 16.5.1.2 Impacts and impact zone of Paks II. operation

During Paks II. operation phase and assuming ordinary operation mode, non-radioactive emission may emerge during the planned pilot or test operation of diesel generators that prove power supply for the safety systems in case of any operational disturbance or emergency.

The stationary air polluting point sources will be the chimneys of the diesel generators.

Based on the emission time and the quantity of the emitted polluting materials (Table 16.5.1-1) the limit values will not be exceeded in any of the air polluting materials.

During the modelling process we used the emission values as described above, so the arising modelling values are presented in Table 16.5.1-5.

|                                  | со    | NO <sub>x</sub>                                | C <sub>x</sub> H <sub>y</sub>                  |
|----------------------------------|-------|------------------------------------------------|------------------------------------------------|
| max. conc. (µg/m <sup>3</sup> ): | 107,2 | 15,3                                           | 3,8                                            |
| value higher than the limit      | none  | none                                           | none                                           |
| impact zone                      | none  | Within 1300 m radius<br>from the source points | Within 2000 m radius<br>from the source points |

Table 16.5.1-5: Impacts of pilot operations of diesel generators

We defined the impact zone of point sources for the safety (stand-by) diesel generators also in accordance with Article 2 § 14 of the Government Decree 306/2010. Impact zone of diesel generators during pilot/test operation cannot be interpreted using the maximum concentration value of the hourly CO emissions, i.e. there is no impact zone. Regarding NOx and CxHy, the impact zone will be as it follows (Figure 16.5.1-2 and Figure 16.5.1-3).

# NOx koncentráció: generátorok



NO<sub>x</sub> koncetráció: generátorok – NO<sub>x</sub> concentration: diesel generators durin pilot/test operation Figure 16.5.1-2: NO<sub>x</sub> impact zone of diesel generators during pilot/test operation


# CxHy koncentráció: generátorok

CxHy koncetráció: generátorok – CxHy concentration: diesel generators durin pilot/test operation Figure 16.5.1-3: C<sub>x</sub>H<sub>y</sub> impact zone of diesel generators during pilot/test operation

#### 16.5.1.3 Impacts and impact zone of transportation

We prepared the propagation simulations for the operation phase and line sources related to transportation only for air pollutants where we had the relevant emission data, like carbon monoxide (CO), nitrogen oxides (NO<sub>x</sub>) and hydrocarbons ( $C_xH_y$ ). The survey of indirect impacts used the emission data presented in Table 16.5.1-4.

We calculated the expected atmospheric concentration distributions using the real meteorological database and conservative meteorological data.

| Transportation                   |      |                 |                               |  |  |  |
|----------------------------------|------|-----------------|-------------------------------|--|--|--|
|                                  | СО   | NO <sub>x</sub> | C <sub>x</sub> H <sub>y</sub> |  |  |  |
| max. conc. (µg/m <sup>3</sup> ): | 2,2  | 2,5             | 0,05                          |  |  |  |
| Value higher than the limit      | none | none            | none                          |  |  |  |
| impact zone:                     | none | none            | none                          |  |  |  |

Table 16.5.1-6: Impacts of transportation onto the air quality during Paks II operation

Based on impacts of transportation during the operation phase we can state that no value higher than the limit will occur irrespective whether we use for the calculation real or conservative meteorological conditions, and the emerging atmospheric concentration values are so small that we do not even present them in separate figures.

#### 16.5.1 OPERATIONAL DISTURBANCES, EMERGENCES

#### Emergency shutdown of the plant

Regarding air quality protection, operational disturbance and event of emergency will be qualified as emission of air pollutants when the units must be shut down through the emergency process and the stand-by diesel generators start working and, of course, emitting.

Only one diesel generator should be able to support such emergency shutdown operation. In this situation one diesel generator will need to operate for 168-hour (uninterrupted) for each unit.

| Emission | Quantity                         |  |  |
|----------|----------------------------------|--|--|
|          | kg / 168 hour / diesel generator |  |  |
| CO       | 4485,8                           |  |  |
| NOx      | 638,2                            |  |  |
| CxHy     | 168                              |  |  |

The concentration values and impact zones for the hourly periods regarding the impact zones are identical with the results presented in Section 16.5.1.2.

### 16.6 IMPACTS OF PAKS II. ABANDONMENT ONTO THE AIR QUALITY

Impacts that may emerge during Paks II abandonment can be hardly estimated due to the very long time horizon of this event and unavailability of exact data related to the abandonment. When the plant equipments are decommissioned and demolished, we may assume that the load would be most probably very similar as during the plant construction phase. This will include works performed on the plant area and road traffic related to the transportation of the demolished materials.

The direct impact zone affected by air pollution during the abandonment phase can be described as the area delineated for the construction works during the structure construction period.

The direct impact zone of the abandonment phase will be within Paks II. area.

Indirect impacts will also emerge during the abandonment period, and the impact zone of traffic can be predicted as similar to the indirect impact zone of the implementation phase.

# **16.7** IMPACTS AND IMPACT ZONES OF SIMULTANEOUS OPERATIONS IN PAKS II. AND PAKS NUCLEAR PLANT

The baseline air pollution load measured in the ambient air in 2012-2013 also includes the impacts of non-radioactive emissions of a Paks Nuclear Plan. If we add the results of modelling of Paks II. independent impacts to the baseline measurement results, then we can have the combined impact of simultaneous operation of Paks II. and Paks Nuclear Plant.

| Air pollutant                      | Baseline air load    | Max. hourly concentration of<br>test run of Paks II diesel<br>generators | Combined impacts of<br>Paks II. and a Paks<br>Nuclear Plant a | Air pollution<br>limit<br>hourly |  |
|------------------------------------|----------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|--|
|                                    | (µg/m <sup>3</sup> ) |                                                                          |                                                               |                                  |  |
| Nitrogen oxides (NO <sub>x</sub> ) | 30                   | 15                                                                       | 45                                                            | 100                              |  |
| Carbon monoxide (CO)               | 525                  | 107                                                                      | 632                                                           | 10 000                           |  |

Table 16.5.1-1: Combined impact of Paks II and a Paks Nuclear Plant simultaneous operation onto air quality

As the results can demonstrate, neither will impacts of non-radioactive emissions from Paks II. standalone operation or combined and simultaneous operation of Paks II. and Paks Nuclear Plant substantially modify the existing air pollution conditions, and it will be qualified as *tolerable-neutral* for the residential areas.

Conventional air pollutants emitted during Paks II operation will have no recordable impacts onto air pollution, and they will not in merit modify the existing air pollution conditions. The impact zone will cover only the site and its direct environment, and will be qualified as *tolerable-neutral* for the residential areas.

Under the existing air pollution conditions, emissions from transportation will most presumably increase the air pollution levels only slightly and along the transportation routes, and this impact onto air pollution cannot be presented, and will be qualified as *tolerable-neutral*.

Based on the modelling results we can state that neither will impacts of cross-border air pollution from Paks II. standalone operation or combined and simultaneous operation of Paks II. and Paks Nuclear Plant occur.

### **16.8 CROSS-BORDER ENVIRONMENTAL IMPACTS**

Based on the modelling results we can state that neither will impacts of non-radioactive emissions from Paks II. standalone operation or combined and simultaneous operation of Paks II. and Paks Nuclear Plant may lead to any cross-border pollution.

## **16.9** REFERENCE

- [16-1] Extension of operation time of Paks Nuclear Plant Environmental Impact Study, ETV-ERŐTERV Rt., 000000K00004ERE/A, 2006. February
- [16-2] 2007. recapitulative assessment of Hungary's air quality based on manual measuring network, VITUKI Environmental Protection mi and Water Management Research Institute KHT., 2008. March 31.
- [16-3] 2008. recapitulative assessment of Hungary's air quality based on manual measuring network, National Meteorological Service, 2009. March 31.]
- [16-4] 2009. recapitulative assessment of Hungary's air quality based on manual measuring network, National Meteorological Service, 2010. March 31
- [16-5] 2010. recapitulative assessment of Hungary's air quality based on manual measuring network, National Meteorological Service, 2011. March
- [16-6] 2011. recapitulative assessment of Hungary's air quality based on manual measuring network, National Meteorological Service, 2012. March
- [16-7] Aerosol filters XRF analysis, Paks, Fadd, AEKI 2010, 2011
- [16-8] Preliminary consultation documentation Pöyry Erőterv Zrt. 6F111121/0002/O, 2012. 01.31.
- [16-09] http://www.emc.ncep.noaa.gov/GFS/doc.php
- [16-10] http://nomads.ncdc.noaa.gov/
- [16-11] EPA, 1995, Heavy Construction Operations AP-42 Section 13.2.3 EPA Contract No. 69-D0-0123, Midwest Research Institute, 1995.
- [16-12] EPA, 1998, Background Documentation For AP-42, Revision of Emission Factors for AP-42 Section 11.9, EPA Contract No. 69-D0-0159, Midwest Research Institute, 1998.